ShigaPass: an in silico tool predicting Shigella serotypes from whole-genome sequencing assemblies

Author:

Yassine Iman12,Hansen Elisabeth E.32,Lefèvre Sophie2,Ruckly Corinne2,Carle Isabelle2,Lejay-Collin Monique2,Fabre Laetitia2,Rafei Rayane1,Pardos de la Gandara Maria2ORCID,Daboussi Fouad1,Shahin Ahmad41,Weill François-Xavier2ORCID

Affiliation:

1. Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon

2. Institut Pasteur, Université Paris Cité, Unité des Bactéries pathogènes entériques, Centre National de Référence des Escherichia coli, Shigella et Salmonella, Paris, F-75015, France

3. Present address: Harvard Medical School, Boston, MA 02115, USA

4. Laboratory of Informatics and their Applications, Doctoral School of Sciences and Technology, Lebanese University, Tripoli, Lebanon

Abstract

Shigella is one of the commonest causes of diarrhoea worldwide and a major public health problem. Shigella serotyping is based on a standardized scheme that splits Shigella strains into four serogroups and 60 serotypes on the basis of biochemical tests and O-antigen structures. This conventional serotyping method is laborious, time-consuming, impossible to automate, and requires a high level of expertise. Whole-genome sequencing (WGS) is becoming more affordable and is now used for routine surveillance, opening up possibilities for the development of much-needed accurate rapid typing methods. Here, we describe ShigaPass, a new in silico tool for predicting Shigella serotypes from WGS assemblies on the basis of rfb gene cluster DNA sequences, phage and plasmid-encoded O-antigen modification genes, seven housekeeping genes (EnteroBase’s MLST scheme), fliC alleles and clustered regularly interspaced short palindromic repeats (CRISPR) spacers. Using 4879 genomes, including 4716 reference strains and clinical isolates of Shigella characterized with a panel of biochemical tests and serotyped by slide agglutination, we show here that ShigaPass outperforms all existing in silico tools, particularly for the identification of Shigella boydii and Shigella dysenteriae serotypes, with a correct serotype assignment rate of 98.5 % and a sensitivity rate (i.e. ability to make any prediction) of 100 %.

Funder

Institut Pasteur

Santé publique France

Fondation Le Roch-Les Mousquetaires

Fulbright Association

Publisher

Microbiology Society

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3