Micromonosporaceae biosynthetic gene cluster diversity highlights the need for broad-spectrum investigations

Author:

Alas Imraan1ORCID,Braun Doug R.1ORCID,Ericksen Spencer S.2ORCID,Salamzade Rauf34ORCID,Kalan Lindsay34ORCID,Rajski Scott R.1ORCID,Bugni Tim S.215ORCID

Affiliation:

1. Pharmaceutical Sciences Division, University of Wisconsin–Madison, Madison, WI, USA

2. Small Molecule Screening Facility, UW Carbone Cancer Center, Madison, WI, USA

3. Department of Biochemistry & Biomedical Sciences, McMaster University, Health Sciences Centre, Hamilton, ON, Canada

4. Department of Medical Microbiology & Immunology, University of Wisconsin–Madison, Madison, WI, USA

5. Lachman Institute for Pharmaceutical Development, University of Wisconsin–Madison, Madison, WI, USA

Abstract

Investigations of the bacterial family Micromonosporaceae have enabled the development of secondary metabolites critical to human health. Historical investigation of bacterial families for natural product discovery has focused on terrestrial strains, where time-consuming isolation processes often lead to the rediscovery of known compounds. To investigate the secondary metabolite potential of marine-derived Micromonosporaceae , 38 strains were sequenced, assembled and analysed using antiSMASH and BiG-SLiCE. BiG-SLiCE contains a near-comprehensive dataset of approximately 1.2 million publicly available biosynthetic gene clusters from primarily terrestrial strains. Our marine-derived Micromonosporaceae were directly compared to BiG-SLiCE’s preprocessed database using BiG-SLiCE’s query mode; genetic diversity within our strains was uncovered using BiG-SCAPE and metric multidimensional scaling analysis. Our analysis of marine-derived Micromonosporaceae emphasizes the clear need for broader genomic investigations of marine strains to fully realize their potential as sources of new natural products.

Funder

National Institutes of Health

Publisher

Microbiology Society

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3