PlasmidEC and gplas2: an optimized short-read approach to predict and reconstruct antibiotic resistance plasmids in Escherichia coli

Author:

Paganini Julian A.1,Kerkvliet Jesse J.1,Vader Lisa1,Plantinga Nienke L.1,Meneses Rodrigo1,Corander Jukka234,Willems Rob J. L.1,Arredondo-Alonso Sergio34,Schürch Anita C.1ORCID

Affiliation:

1. Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands

2. Helsinki Institute of Information Technology, Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland

3. Parasites and Microbes, Wellcome Sanger Institute, Cambridge, UK

4. Department of Biostatistics, Faculty of Medicine, University of Oslo, Oslo, Norway

Abstract

Accurate reconstruction of Escherichia coli antibiotic resistance gene (ARG) plasmids from Illumina sequencing data has proven to be a challenge with current bioinformatic tools. In this work, we present an improved method to reconstruct E. coli plasmids using short reads. We developed plasmidEC, an ensemble classifier that identifies plasmid-derived contigs by combining the output of three different binary classification tools. We showed that plasmidEC is especially suited to classify contigs derived from ARG plasmids with a high recall of 0.941. Additionally, we optimized gplas, a graph-based tool that bins plasmid-predicted contigs into distinct plasmid predictions. Gplas2 is more effective at recovering plasmids with large sequencing coverage variations and can be combined with the output of any binary classifier. The combination of plasmidEC with gplas2 showed a high completeness (median=0.818) and F1-Score (median=0.812) when reconstructing ARG plasmids and exceeded the binning capacity of the reference-based method MOB-suite. In the absence of long-read data, our method offers an excellent alternative to reconstruct ARG plasmids in E. coli.

Funder

zonmw

NCOH

Health~Holland

H2020 Marie Skłodowska-Curie Actions

Publisher

Microbiology Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3