The Gonococcal Genetic Island defines distinct sub-populations of Neisseria gonorrhoeae

Author:

Youngblom Madison A.12ORCID,Shockey Abigail C.3ORCID,Callaghan Melanie M.2ORCID,Dillard Joseph P.2ORCID,Pepperell Caitlin S.42ORCID

Affiliation:

1. Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA

2. Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA

3. Wisconsin State Laboratory of Hygiene, Madison, WI, USA

4. Department of Medicine (Infectious Diseases), School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA

Abstract

The incidence of gonorrhoea is increasing at an alarming pace, and therapeutic options continue to narrow as a result of worsening drug resistance. Neisseria gonorrhoeae is naturally competent, allowing the organism to adapt rapidly to selection pressures including antibiotics. A sub-population of N. gonorrhoeae carries the Gonococcal Genetic Island (GGI), which encodes a type IV secretion system (T4SS) that secretes chromosomal DNA. Previous research has shown that the GGI increases transformation efficiency in vitro, but the extent to which it contributes to horizontal gene transfer (HGT) during infection is unknown. Here we analysed genomic data from clinical isolates of N. gonorrhoeae to better characterize GGI+ and GGI− sub-populations and to delineate patterns of variation at the locus itself. We found the element segregating at an intermediate frequency (61%), and it appears to act as a mobile genetic element with examples of gain, loss, exchange and intra-locus recombination within our sample. We further found evidence suggesting that GGI+ and GGI− sub-populations preferentially inhabit distinct niches with different opportunities for HGT. Previously, GGI+ isolates were reported to be associated with more severe clinical infections, and our results suggest this could be related to metal-ion trafficking and biofilm formation. The co-segregation of GGI+ and GGI− isolates despite mobility of the element suggests that both niches inhabited by N. gonorrhoeae remain important to its overall persistence as has been demonstrated previously for cervical- and urethral-adapted sub-populations. These data emphasize the complex population structure of N. gonorrhoeae and its capacity to adapt to diverse niches.

Funder

Foundation for the National Institutes of Health

National Science Foundation

Publisher

Microbiology Society

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3