Fundamental differences in physiology of Bordetella pertussis dependent on the two-component system Bvg revealed by gene essentiality studies

Author:

Belcher Thomas12ORCID,MacArthur Iain2,King Jerry D.2ORCID,Langridge Gemma C.34ORCID,Mayho Matthew4,Parkhill Julian54ORCID,Preston Andrew2ORCID

Affiliation:

1. Present address: Institute Pasteur Lille, Lille, France

2. Milner Centre for Evolution and Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, UK

3. Present address: Quadram Institute, Norwich, UK

4. Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK

5. Present address: Department of Veterinary Medicine, University of Cambridge, Cambridge, UK

Abstract

The identification of genes essential for a bacterium’s growth reveals much about its basic physiology under different conditions. Bordetella pertussis , the causative agent of whooping cough, adopts both virulent and avirulent states through the activity of the two-component system, Bvg. The genes essential for B. pertussis growth in vitro were defined using transposon sequencing, for different Bvg-determined growth states. In addition, comparison of the insertion indices of each gene between Bvg phases identified those genes whose mutation exerted a significantly different fitness cost between phases. As expected, many of the genes identified as essential for growth in other bacteria were also essential for B. pertussis . However, the essentiality of some genes was dependent on Bvg. In particular, a number of key cell wall biosynthesis genes, including the entire mre/mrd locus, were essential for growth of the avirulent (Bvg minus) phase but not the virulent (Bvg plus) phase. In addition, cell wall biosynthesis was identified as a fundamental process that when disrupted produced greater fitness costs for the Bvg minus phase compared to the Bvg plus phase. Bvg minus phase growth was more susceptible than Bvg plus phase growth to the cell wall-disrupting antibiotic ampicillin, demonstrating the increased susceptibility of the Bvg minus phase to disruption of cell wall synthesis. This Bvg-dependent conditional essentiality was not due to Bvg-regulation of expression of cell wall biosynthesis genes; suggesting that this fundamental process differs between the Bvg phases in B. pertussis and is more susceptible to disruption in the Bvg minus phase. The ability of a bacterium to modify its cell wall synthesis is important when considering the action of antibiotics, particularly if developing novel drugs targeting cell wall synthesis.

Funder

Biotechnology and Biological Sciences Research Council

Publisher

Microbiology Society

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3