Towards comprehensive understanding of bacterial genetic diversity: large-scale amplifications in Bordetella pertussis and Mycobacterium tuberculosis

Author:

Abrahams Jonathan S.1ORCID,Weigand Michael R.2ORCID,Ring Natalie1ORCID,MacArthur Iain1ORCID,Etty Joss1ORCID,Peng Scott2,Williams Margaret M.2,Bready Barret3,Catalano Anthony P.3ORCID,Davis Jennifer R.3,Kaiser Michael D.3ORCID,Oliver John S.3ORCID,Sage Jay M.3,Bagby Stefan1ORCID,Tondella M. Lucia2,Gorringe Andrew R.4ORCID,Preston Andrew1

Affiliation:

1. Department of Biology and Biochemistry and Milner Centre for Evolution, University of Bath, Bath, UK

2. Division of Bacterial Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA

3. Nabsys 2.0, Providence, RI 02809, USA

4. Public Health England, Porton Down, Salisbury, UK

Abstract

Bacterial genetic diversity is often described solely using base-pair changes despite a wide variety of other mutation types likely being major contributors. Tandem duplication/amplifications are thought to be widespread among bacteria but due to their often-intractable size and instability, comprehensive studies of these mutations are rare. We define a methodology to investigate amplifications in bacterial genomes based on read depth of genome sequence data as a proxy for copy number. We demonstrate the approach with Bordetella pertussis , whose insertion sequence element-rich genome provides extensive scope for amplifications to occur. Analysis of data for 2430 B. pertussis isolates identified 272 putative amplifications, of which 94 % were located at 11 hotspot loci. We demonstrate limited phylogenetic connection for the occurrence of amplifications, suggesting unstable and sporadic characteristics. Genome instability was further described in vitro using long-read sequencing via the Nanopore platform, which revealed that clonally derived laboratory cultures produced heterogenous populations rapidly. We extended this research to analyse a population of 1000 isolates of another important pathogen, Mycobacterium tuberculosis . We found 590 amplifications in M. tuberculosis , and like B. pertussis , these occurred primarily at hotspots. Genes amplified in B. pertussis include those involved in motility and respiration, whilst in M. tuberuclosis, functions included intracellular growth and regulation of virulence. Using publicly available short-read data we predicted previously unrecognized, large amplifications in B. pertussis and M. tuberculosis . This reveals the unrecognized and dynamic genetic diversity of B. pertussis and M. tuberculosis , highlighting the need for a more holistic understanding of bacterial genetics.

Publisher

Microbiology Society

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3