Target-enrichment sequencing yields valuable genomic data for challenging-to-culture bacteria of public health importance

Author:

Dennis Tristan P. W.1ORCID,Mable Barbara K.1ORCID,Brunelle Brian2,Devault Alison2,Carter Ryan W.1,Ling Clare L.34ORCID,Mmbaga Blandina T.5ORCID,Halliday Jo E. B.1ORCID,Oravcova Katarina1ORCID,Forde Taya L.1ORCID

Affiliation:

1. Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK

2. Daicel Arbor Biosciences, Ann Arbor, Michigan, USA

3. Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK

4. Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand

5. Kilimanjaro Clinical Research Institute, Kilimanjaro Christian Medical Centre, Moshi, Tanzania

Abstract

Genomic data contribute invaluable information to the epidemiological investigation of pathogens of public health importance. However, whole-genome sequencing (WGS) of bacteria typically relies on culture, which represents a major hurdle for generating such data for a wide range of species for which culture is challenging. In this study, we assessed the use of culture-free target-enrichment sequencing as a method for generating genomic data for two bacterial species: (1) Bacillus anthracis, which causes anthrax in both people and animals and whose culture requires high-level containment facilities; and (2) Mycoplasma amphoriforme , a fastidious emerging human respiratory pathogen. We obtained high-quality genomic data for both species directly from clinical samples, with sufficient coverage (>15×) for confident variant calling over at least 80% of the baited genomes for over two thirds of the samples tested. Higher qPCR cycle threshold (Ct) values (indicative of lower pathogen concentrations in the samples), pooling libraries prior to capture, and lower captured library concentration were all statistically associated with lower capture efficiency. The Ct value had the highest predictive value, explaining 52 % of the variation in capture efficiency. Samples with Ct values ≤30 were over six times more likely to achieve the threshold coverage than those with a Ct > 30. We conclude that target-enrichment sequencing provides a valuable alternative to standard WGS following bacterial culture and creates opportunities for an improved understanding of the epidemiology and evolution of many clinically important pathogens for which culture is challenging.

Funder

Medical Research Council

H2020 European Research Council

Biotechnology and Biological Sciences Research Council

Academy of Medical Sciences

Publisher

Microbiology Society

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3