Genome and Methylome analysis of a phylogenetic novel Campylobacter coli cluster with C. jejuni introgression

Author:

Dieckmann Anastasia-Lisa1,Riedel Thomas23,Bunk Boyke3,Spröer Cathrin3,Overmann Jörg23ORCID,Groß Uwe1ORCID,Bader Oliver1ORCID,Bohne Wolfgang1ORCID,Morgenstern Burkhard4ORCID,Hosseini Morteza54ORCID,Zautner Andreas E.1ORCID

Affiliation:

1. Institut für Medizinische Mikrobiologie und Virologie, Universitätsmedizin Göttingen, Göttingen, Germany

2. Deutsches Zentrum für Infektionsforschung (DZIF) Hannover–Braunschweig, Braunschweig, Germany

3. Leibniz-Institut DSMZ–Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Braunschweig, Germany

4. Institut für Mikrobiologie und Genetik, Abteilung Bioinformatik, Universität Göttingen, Göttingen, Germany

5. IEETA/DETI, University of Aveiro, Aveiro, Portugal

Abstract

The intriguing recent discovery of Campylobacter coli strains, especially of clade 1, that (i) possess mosaic C. coli / C. jejuni alleles, (ii) demonstrate mixed multilocus sequence types (MLSTs) and (iii) have undergone genome-wide introgression has led to the speculation that these two species may be involved in an accelerated rate of horizontal gene transfer that is progressively leading to the merging of both species in a process coined ‘despeciation’. In an MLST-based neighbour-joining tree of a number of C. coli and C. jejuni isolates of different clades, three prominent Campylobacter isolates formed a seemingly separate cluster besides the previously described C. coli and C. jejuni clades. In the light of the suspected, ongoing genetic introgression between the C. coli and C. jejuni species, this cluster of Campylobacter isolates is proposed to present one of the hybrid clonal complexes in the despeciation process of the genus. Specific DNA methylation as well as restriction modification systems are known to be involved in selective uptake of external DNA and their role in such genetic introgression remains to be further investigated. In this study, the phylogeny and DNA methylation of these putative C. coli / C. jejuni hybrid strains were explored, their genomic mosaic structure caused by C. jejuni introgression was demonstrated and basic phenotypic assays were used to characterize these isolates. The genomes of the three hybrid Campylobacter strains were sequenced using PacBio SMRT sequencing, followed by methylome analysis by Restriction-Modification Finder and genome analysis by Parsnp, Smash++ and blast. Additionally, the strains were phenotypically characterized with respect to growth behaviour, motility, eukaryotic cell invasion and adhesion, autoagglutination, biofilm formation, and water survival ability. Our analyses show that the three hybrid Campylobacter strains are clade 1 C . coli strains, which have acquired between 8.1 and 9.1 % of their genome from C. jejuni . The C. jejuni genomic segments acquired are distributed over the entire genome and do not form a coherent cluster. Most of the genes originating from C. jejuni are involved in chemotaxis and motility, membrane transport, cell signalling, or the resistance to toxic compounds such as bile acids. Interspecies gene transfer from C. jejuni has contributed 8.1–9.1% to the genome of three C. coli isolates and initiated the despeciation between C. jejuni and C. coli . Based on their functional annotation, the genes originating from C. jejuni enable the adaptation of the three strains to an intra-intestinal habitat. The transfer of a fused type II restriction-modification system that recognizes the CAYNNNNNCTC/GAGNNNNNRTG motif seems to be the key for the recombination of the C. jejuni genetic material with C. coli genomes.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Microbiology Society

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3