Long read genome assemblers struggle with small plasmids

Author:

Johnson Jared1ORCID,Soehnlen Marty1,Blankenship Heather M.1ORCID

Affiliation:

1. Michigan Department of Health and Human Services, Bureau of Laboratories, Lansing, MI, 48906, USA

Abstract

Whole-genome sequencing has become a preferred method for studying bacterial plasmids, as it is generally assumed to capture the entire genome. However, long-read genome assemblers have been shown to sometimes miss plasmid sequences – an issue that has been associated with plasmid size. The purpose of this study was to investigate the relationship between plasmid size and plasmid recovery by the long-read-only assemblers, Flye, Raven, Miniasm, and Canu. This was accomplished by determining the number of times each assembler successfully recovered 33 plasmids, ranging from 1919 to 194 062 bp in size and belonging to 14 bacterial isolates from six bacterial genera, using Oxford Nanopore long reads. These results were additionally compared to plasmid recovery rates by the short-read-first assembler, Unicycler, using both Oxford Nanopore long reads and Illumina short reads. Results from this study indicate that Canu, Flye, Miniasm, and Raven are prone to missing plasmid sequences, whereas Unicycler was successful at recovering 100 % of plasmid sequences. Excluding Canu, most plasmid loss by long-read-only assemblers was due to failure to recover plasmids smaller than 10 kb. As such, it is recommended that Unicycler be used to increase the likelihood of plasmid recovery during bacterial genome assembly.

Funder

Association of Public Health Laboratories

Epidemiology and Laboratory Capacity for Prevention and Control of Emerging Infectious Disease

Publisher

Microbiology Society

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3