An OmpW-dependent T4-like phage infects Serratia sp. ATCC 39006

Author:

Mahler Marina123,Malone Lucia M.413,van den Berg Daan F.41,Smith Leah M.23,Brouns Stan J. J.41,Fineran Peter C.352ORCID

Affiliation:

1. Department of Bionanoscience, Delft University of Technology, Delft, Netherlands

2. Genetics Otago, University of Otago, Dunedin, New Zealand

3. Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand

4. Kavli Institute of Nanoscience, Delft, Netherlands

5. Bioprotection Aotearoa, University of Otago, Dunedin, New Zealand

Abstract

Serratia sp. ATCC 39006 is a Gram-negative bacterium that has been used to study the function of phage defences, such as CRISPR–Cas, and phage counter-defence mechanisms. To expand our phage collection to study the phage–host interaction with Serratia sp. ATCC 39006, we isolated the T4-like myovirus LC53 in Ōtepoti Dunedin, Aotearoa New Zealand. Morphological, phenotypic and genomic characterization revealed that LC53 is virulent and similar to other Serratia , Erwinia and Kosakonia phages belonging to the genus Winklervirus. Using a transposon mutant library, we identified the host ompW gene as essential for phage infection, suggesting that it encodes the phage receptor. The genome of LC53 encodes all the characteristic T4-like core proteins involved in phage DNA replication and generation of viral particles. Furthermore, our bioinformatic analysis suggests that the transcriptional organization of LC53 is similar to that of Escherichia coli phage T4. Importantly, LC53 encodes 18 tRNAs, which likely compensate for differences in GC content between phage and host genomes. Overall, this study describes a newly isolated phage infecting Serratia sp. ATCC 39006 that expands the diversity of phages available to study phage–host interactions.

Funder

Marsden Fund

Publisher

Microbiology Society

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3