Distinct Streptococcus pneumoniae cause invasive disease in Papua New Guinea

Author:

Mellor Kate C.1ORCID,Lo Stephanie1,Yoannes Mition2,Michael† Audrey2,Orami Tilda2,Greenhill Andrew R.3,Breiman Robert F.4,Hawkins Paulina5,McGee Lesley5,Bentley Stephen D.1,Ford Rebecca L.2,Lehmann Deborah6

Affiliation:

1. Parasites and Microbes, Wellcome Sanger Institute, Hinxton, UK

2. Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea

3. Institute of Innovation, Science and Sustainability, Federation University Australia, Churchill, Australia

4. Rollins School of Public Health Emory University, Atlanta, GA, USA

5. Centers for Disease Control and Prevention, Atlanta, GA, USA

6. Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, The University of Western Australia, Crawley WA 6009, Australia

Abstract

Streptococcus pneumoniae is a key contributor to childhood morbidity and mortality in Papua New Guinea (PNG). For the first time, whole genome sequencing of 174 isolates has enabled detailed characterisation of diverse S. pneumoniae causing invasive disease in young children in PNG, 1989-2014. This study captures the baseline S. pneumoniae population prior to the introduction of 13-valent pneumococcal conjugate vaccine (PCV13) into the national childhood immunisation programme in 2014. Relationships amongst lineages, serotypes and antimicrobial resistance traits were characterised, and the population was viewed in the context of a global collection of isolates. The analyses highlighted adiverse S. pneumoniae population associated with invasive disease in PNG, with 45 unique Global Pneumococcal Sequence Clusters (GPSCs) observed amongst the 174 isolates reflecting multiple lineages observed in PNG that have not been identified in other geographic locations. The majority of isolates were from children with meningitis, of which 52% (n=72) expressed non-PCV13 serotypes. Over a third of isolates were predicted to be resistant to at least one antimicrobial. PCV13 serotype isolates had 10.1 times the odds of being multidrug-resistant (MDR) compared to non-vaccine serotype isolates, and no isolates with GPSCs unique to PNG were MDR. Serotype 2 was the most commonly identified serotype; we identified a highly clonal cluster of serotype 2 isolates unique to PNG, and a distinct second cluster indicative of long-distance transmission. Ongoing surveillance, including whole-genome sequencing, is needed to ascertain the impact of the national PCV13 programme upon the S. pneumoniae population, including serotype replacement and antimicrobial resistance traits.

Publisher

Microbiology Society

Subject

General Medicine

Reference45 articles.

1. The bacteriology of acute pneumonia and meningitis in children in Papua New Guinea: assumptions, facts and technical strategies;Gratten;P N G Med J,1991

2. Streptococcus pneumoniae and Haemophilus influenzae in paediatric meningitis patients at Goroka General Hospital, Papua New Guinea: serotype distribution and antimicrobial susceptibility in the pre-vaccine era

3. Pneumonia research in Papua New Guinea: 1967-1986;Riley;P N G Med J,2010

4. Papua New Guinea Country Profile;WWW Document. URL,2021

5. The Languages and Linguistics of the New Guinea Area

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3