Rapid adaptations of Legionella pneumophila to the human host

Author:

Leenheer Daniël12ORCID,Moreno Anaísa B.2ORCID,Paranjape Kiran2ORCID,Murray Susan2ORCID,Jarraud Sophie34ORCID,Ginevra Christophe34ORCID,Guy Lionel2ORCID

Affiliation:

1. Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Japan

2. Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden

3. CIRI, Centre International de Recherche en Infectiologie, Legionella Pathogenesis Team, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France

4. French National Reference Center of Legionella, Institute of Infectious Agents, Hospices Civils de Lyon, Lyon, France

Abstract

Legionella pneumophila are host-adapted bacteria that infect and reproduce primarily in amoeboid protists. Using similar infection mechanisms, they infect human macrophages, and cause Legionnaires’ disease, an atypical pneumonia, and the milder Pontiac fever. We hypothesized that, despite the similarities in infection mechanisms, the hosts are different enough that there exist high-selective value mutations that would dramatically increase the fitness of Legionella inside the human host. By comparing a large number of isolates from independent infections, we identified two genes, mutated in three unrelated patients, despite the short duration of the incubation period (2–14 days). One is a gene coding for an outer membrane protein (OMP) belonging to the OmpP1/FadL family. The other is a gene coding for an EAL-domain-containing protein involved in cyclic-di-GMP regulation, which in turn modulates flagellar activity. The clinical strain, carrying the mutated EAL-domain-containing homologue, grows faster in macrophages than the wild-type strain, and thus appears to be better adapted to the human host. As human-to-human transmission is very rare, fixation of these mutations into the population and spread into the environment is unlikely. Therefore, parallel evolution – here mutations in the same genes observed in independent human infections – could point to adaptations to the accidental human host. These results suggest that despite the ability of L. pneumophila to infect, replicate in and exit from macrophages, its human-specific adaptations are unlikely to be fixed in the population.

Funder

Fonds de recherche du Québec – Nature et technologies

Vetenskapsrådet

Carl Tryggers Stiftelse för Vetenskaplig Forskning

Science for Life Laboratory

Publisher

Microbiology Society

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3