Exopolyphosphatase of Pseudomonas aeruginosa is essential for the production of virulence factors, and its expression is controlled by NtrC and PhoB acting at two interspaced promoters

Author:

Gallarato Lucas A.1,Sánchez Diego G.1,Olvera Leticia2,Primo Emiliano D.1,Garrido Mónica N.1,Beassoni Paola R.1,Morett Enrique2,Lisa Angela T.1

Affiliation:

1. Departamento de Biología Molecular, FCEFQyN, Universidad Nacional de Río Cuarto, Ruta 36-Km 601, (5800) Río Cuarto, Córdoba, Argentina

2. Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico

Abstract

The exopolyphosphatase (Ppx) of Pseudomonas aeruginosa is encoded by the PA5241 gene (ppx). Ppx catalyses the hydrolysis of inorganic polyphosphates to orthophosphate (Pi). In the present work, we identified and characterized the promoter region of ppx and its regulation under environmental stress conditions. The role of Ppx in the production of several virulence factors was demonstrated through studies performed on a ppx null mutant. We found that ppx is under the control of two interspaced promoters, dually regulated by nitrogen and phosphate limitation. Under nitrogen-limiting conditions, its expression was controlled from a σ54-dependent promoter activated by the response regulator NtrC. However, under Pi limitation, the expression was controlled from a σ70 promoter, activated by PhoB. Results obtained from the ppx null mutant demonstrated that Ppx is involved in the production of virulence factors associated with both acute infection (e.g. motility-promoting factors, blue/green pigment production, C6–C12 quorum-sensing homoserine lactones) and chronic infection (e.g. rhamnolipids, biofilm formation). Molecular and physiological approaches used in this study indicated that P. aeruginosa maintains consistently proper levels of Ppx regardless of environmental conditions. The precise control of ppx expression appeared to be essential for the survival of P. aeruginosa and the occurrence of either acute or chronic infection in the host.

Funder

CONACyT, México

UNAM

DGAPA

CONICET, Argentina

MinCyT-Cba

SECYT-UNRC

Publisher

Microbiology Society

Subject

Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3