A new regulator of pathogenicity (bvlR) is required for full virulence and tight microcolony formation in Pseudomonas aeruginosa

Author:

McCarthy Ronan R.1,Mooij Marlies J.1,Reen F. Jerry1,Lesouhaitier Olivier2,O’Gara Fergal31

Affiliation:

1. BIOMERIT Research Centre, School of Microbiology, University College Cork, Cork, Ireland

2. Laboratory of Microbiology Signals and Microenvironment LMSM EA4312, University of Rouen, 55 rue Saint Germain, 27000 Evreux, France

3. Curtin University, School of Biomedical Sciences, Perth, WA, Australia

Abstract

LysR-type transcriptional regulators (LTTRs) are the most common family of transcriptional regulators found in the opportunistic pathogen Pseudomonas aeruginosa. They are known to regulate a wide variety of virulence determinants and have emerged recently as positive global regulators of pathogenicity in a broad spectrum of important bacterial pathogens. However, in spite of their key role in modulating expression of key virulence determinants underpinning pathogenic traits associated with the process of infection, surprisingly few are found to be transcriptionally altered by contact with host cells. BvlR (PA14_26880) an LTTR of previously unknown function, has been shown to be induced in response to host cell contact, and was therefore investigated for its potential role in virulence. BvlR expression was found to play a pivotal role in the regulation of acute virulence determinants such as type III secretion system and exotoxin A production. BvlR also played a key role in P. aeruginosa pathogenicity within the Caenorhabditis elegans acute model of infection. Loss of BvlR led to an inability to form tight microcolonies, a key step in biofilm formation in the cystic fibrosis lung, although surface attachment was increased. Unusually for LTTRs, BvlR was shown to exert its influence through the transcriptional repression of many genes, including the virulence-associated cupA and alg genes. This highlights the importance of BvlR as a new virulence regulator in P. aeruginosa with a central role in modulating key events in the pathogen–host interactome.

Funder

Marine Microbial Biodiversity, Bioinformatics and Biotechnology

Marine Micro-organisms: Cultivation Methods for improving their Biotechnological Applications

Science Foundation of Ireland

Health Research Board

Increasing Value and Flow in the Marine Biodiscovery Pipeline

Teagasc

Department of Agriculture, Fisheries and Food

Environmental Protection Agency

European Commission

Irish Research Council for Science, Engineering and Technology

Publisher

Microbiology Society

Subject

Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3