Affiliation:
1. ZIEL, Abteilung Mikrobiologie, and Lehrstuhl für Mikrobielle Ökologie, Fakultät für Grundlagen der Biowissenschaften, Wissenschaftszentrum Weihenstephan, Technische Universität München, Weihenstephaner Berg 3, 85350 Freising, Germany
Abstract
Upon entering the human gastrointestinal tract, foodborne bacterial enteropathogens encounter, among numerous other stress conditions, nutrient competition with the host organism and the commensal microbiota. The main carbon, nitrogen and energy sources exploited by pathogens during proliferation in, and colonization of, the gut have, however, not been identified completely. In recent years, a huge body of literature has provided evidence that most enteropathogens are equipped with a large set of specific metabolic pathways to overcome nutritional limitations in vivo, thus increasing bacterial fitness during infection. These adaptations include the degradation of myo-inositol, ethanolamine cleaved from phospholipids, fucose derived from mucosal glycoconjugates, 1,2-propanediol as the fermentation product of fucose or rhamnose and several other metabolites not accessible for commensal bacteria or present in competition-free microenvironments. Interestingly, the data reviewed here point to common metabolic strategies of enteric pathogens allowing the exploitation of nutrient sources that not only are present in the gut lumen, the mucosa or epithelial cells, but also are abundant in food. An increased knowledge of the metabolic strategies developed by enteropathogens is therefore a key factor to better control foodborne diseases.
Funder
German Research Foundation