Antibiotic treatment of Pseudomonas aeruginosa biofilms stimulates expression of the magnesium transporter gene mgtE

Author:

Redelman Carly V.12,Chakravarty Shubham2,Anderson Gregory G.2

Affiliation:

1. Department of Biology, Butler University, Indianapolis, IN 46208, USA

2. Department of Biology, IUPUI, Indianapolis, IN 46202, USA

Abstract

Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen with the capacity to cause serious disease, including chronic biofilm infections in the lungs of cystic fibrosis (CF) patients. These infections are treated with high concentrations of antibiotics. Virulence modulation is an important tool utilized by P. aeruginosa to propagate infection and biofilm formation in the CF airway. Many different virulence modulatory pathways and proteins have been identified, including the magnesium transporter protein MgtE. We have recently found that isogenic deletion of mgtE leads to increased cytotoxicity through effects on the type III secretion system. To explore the role of the CF lung environment in MgtE activity, we investigated mgtE transcriptional regulation following antibiotic treatment. Utilizing quantitative real-time-PCR, we have demonstrated an increase in mgtE transcript levels following antibiotic treatment with most of the 12 antibiotics tested. To begin to determine the regulatory network governing mgtE expression, we screened a transposon-mutant library of P. aeruginosa to look for mutants with potentially altered mgtE activity, using cytotoxicity as a readout. In this screen, we observed that AlgR, which regulates production of the biofilm polysaccharide alginate, alters MgtE-mediated cytotoxicity. This cross-talk between MgtE and AlgR suggests that AlgR is involved in linking external inducing signals (e.g. antibiotics) to mgtE transcription and downstream virulence and biofilm activities. Analysing such interactions may lead to a better understanding of how the CF lung environment shapes P. aeruginosa biofilm infections.

Funder

NSF

Purdue University

Publisher

Microbiology Society

Subject

Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3