Insights into Clostridium phytofermentans biofilm formation: aggregation, microcolony development and the role of extracellular DNA

Author:

Zuroff Trevor R.1,Gu Weimin2,Fore Rachel L.1,Leschine Susan B.3,Curtis Wayne R.1

Affiliation:

1. Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA

2. Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA

3. Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA

Abstract

Biofilm formation is a critical component to the lifestyle of many naturally occurring cellulose-degrading microbes. In this work, cellular aggregation and biofilm formation of Clostridium phytofermentans, a cellulolytic anaerobic bacterium, was investigated using a combination of microscopy and analytical techniques. Aggregates included thread-like linkages and a DNA/protein-rich extracellular matrix when grown on soluble cellobiose. Similar dense biofilms formed on the surface of the model cellulosic substrate Whatman no. 1 filter paper. Following initially dispersed attachment, microcolonies of ~500 µm diameter formed on the filter paper after 6 days. Enzymic treatment of both the biofilm and cellular aggregates with DNase and proteinase resulted in significant loss of rigidity, pointing to the key role of extracellular DNA and proteins in the biofilm structure. A high-throughput biofilm assay was adapted for studying potential regulators of biofilm formation. Various media manipulations were shown to greatly impact biofilm formation, including repression in the presence of glucose but not the β(1→4)-linked disaccharide cellobiose, implicating a balance of hydrolytic activity and assimilation to maintain biofilm integrity. Using the microtitre plate biofilm assay, DNase and proteinase dispersed ~60 and 30 % of mature biofilms, respectively, whilst RNase had no impact. This work suggests that Clostridium phytofermentans has evolved a DNA/protein-rich biofilm matrix complementing its cellulolytic nature. These insights add to our current understanding of natural ecosystems as well as strategies for efficient bioprocess design.

Funder

National Science Foundation GRFP Fellowship

John and Jeannette McWhirter Fellowship

DOE Advanced Research Project Agency – Energy

Publisher

Microbiology Society

Subject

Microbiology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3