Affiliation:
1. Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology Iowa State University, Ames, IA 50011, USA
Abstract
Escherichia coli was engineered for the production of even- and odd-chain fatty acids (FAs) by fermentation. Co-production of thiolase, hydroxybutyryl-CoA dehydrogenase, crotonase and trans-enoyl-CoA reductase from a synthetic operon allowed the production of butyrate, hexanoate and octanoate. Elimination of native fermentation pathways by genetic deletion (ΔldhA, ΔadhE, ΔackA, Δpta, ΔfrdC) helped eliminate undesired by-products and increase product yields. Initial butyrate production rates were high (0.7 g l−1 h−1) but quickly levelled off and further study suggested this was due to product toxicity and/or acidification of the growth medium. Results also showed that endogenous thioesterases significantly influenced product formation. In particular, deletion of the yciA thioesterase gene substantially increased hexanoate production while decreasing the production of butyrate. E. coli was also engineered to co-produce enzymes for even-chain FA production (described above) together with a coenzyme B12-dependent pathway for the production of propionyl-CoA, which allowed the production of odd-chain FAs (pentanoate and heptanoate). The B12-dependent pathway used here has the potential to allow the production of odd-chain FAs from a single growth substrate (glucose) in a more energy-efficient manner than the prior methods.
Funder
National Science Foundation
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献