Identification of the immunoproteome of the meningococcus by cell surface immunoprecipitation and MS

Author:

Newcombe Jane1,Mendum Tom A.1,Ren Chuan-peng1,McFadden Johnjoe1

Affiliation:

1. School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK

Abstract

Most healthy adults are protected from meningococcal disease by the presence of naturally acquired anti-meningococcal antibodies; however, the identity of the target antigens of this protective immunity remains unclear, particularly for protection against serogroup B disease. To identify the protein targets of natural protective immunity we developed an immunoprecipitation and proteomics approach to define the immunoproteome of the meningococcus. Sera from 10 healthy individuals showing serum bactericidal activity against both a meningococcal C strain (L91543) and the B strain MC58, together with commercially available pooled human sera, were used as probe antisera. Immunoprecipitation was performed with each serum sample and live cells from both meningococcal strains. Immunoprecipitated proteins were identified by MS. Analysis of the immunoproteome from each serum demonstrated both pan-reactive antigens that were recognized by most sera as well as subject-specific antigens. Most antigens were found in both meningococcal strains, but a few were strain-specific. Many of the immunoprecipitated proteins have been characterized previously as surface antigens, including adhesins and proteases, several of which have been recognized as vaccine candidate antigens, e.g. factor H-binding protein, NadA and neisserial heparin-binding antigen. The data demonstrate clearly the presence of meningococcal antibodies in healthy individuals with no history of meningococcal infection and a wide diversity of immune responses. The identification of the immunoreactive proteins of the meningococcus provides a basis for understanding the role of each antigen in the natural immunity associated with carriage and may help to design vaccination strategies.

Funder

Sanofi Pasteur

Publisher

Microbiology Society

Subject

Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3