Glucosylation of Rho GTPases by Clostridium difficile toxin A triggers apoptosis in intestinal epithelial cells

Author:

Gerhard Ralf1,Nottrott Stefanie1,Schoentaube Janett1,Tatge Helma1,Olling Alexandra1,Just Ingo1

Affiliation:

1. Institute of Toxicology, Hannover Medical School, 30625 Hannover, Germany

Abstract

The intestinal epithelial cell line HT-29 was used to study the apoptotic effect of Clostridium difficile toxin A (TcdA). TcdA is a 300 kDa single-chain protein, which glucosylates and thereby inactivates small GTPases of the Rho family (Rho, Rac and Cdc42). The effect of TcdA-catalysed glucosylation of the Rho GTPases is well known: reorganization of the actin cytoskeleton with accompanying morphological changes in cells, leading to complete rounding of cells and destruction of the intestinal barrier function. Less is known about the mechanism by which apoptosis is induced in TcdA-treated cells. In this study, TcdA induced the activation of caspase-3, -8 and -9. Apoptosis, as estimated by the DNA content of cells, started as early as 24 h after the addition of TcdA. The impact of Rho glucosylation was obvious when mutant TcdA with reduced or deficient glucosyltransferase activity was applied. TcdA mutant W101A, with 50-fold reduced glucosyltransferase activity, induced apoptosis only at an equipotent concentration compared with wild-type TcdA at a 50 % effective concentration of 0.2 nM. The enzyme-deficient mutant TcdA D285/287N was not able to induce apoptosis. Apoptosis induced by TcdA strictly depended on the activation of caspases, and was completely blocked by the pan-caspase inhibitor z-VAD-fmk. Destruction of the actin cytoskeleton by latrunculin B was not sufficient to induce apoptosis, indicating that apoptosis induced by TcdA must be due to another mechanism. In summary, TcdA-induced apoptosis (cytotoxic effect) depends on the glucosylation of Rho GTPases, but is not triggered by destruction of the actin cytoskeleton (cytopathic effect).

Publisher

Microbiology Society

Subject

Microbiology (medical),General Medicine,Microbiology

Cited by 92 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3