Expression of biofilm-associated genes of Streptococcus mutans in response to glucose and sucrose

Author:

Shemesh Moshe1,Tam Avshalom1,Steinberg Doron1

Affiliation:

1. Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University-Hadassah, POB 12272, Jerusalem 91120, Israel

Abstract

Streptococcus mutans is known as a primary pathogen of dental caries, one of the most common human infectious diseases. Exopolysaccharide synthesis, adherence to tooth surface and biofilm formation are important physiological and virulence factors of S. mutans. In vitro comparative gene expression analysis was carried out to differentiate 10 selected genes known to be mostly involved in S. mutans biofilm formation by comparing the expression under biofilm and planktonic environments. Real-time RT-PCR analyses indicated that all of the genes tested were upregulated in the biofilm compared to cells grown in planktonic conditions. The influence of simple dietary carbohydrates on gene expression in S. mutans biofilm was tested also. Among the tested genes, in the biofilm phase, the greatest induction was observed for gtf and ftf, which are genes encoding the extracellular polysaccharide-producing enzymes. Biofilm formation was accompanied by a 22-fold induction in the abundance of mRNA encoding glucosyltransferase B (GTFB) and a 14.8 -fold increase in mRNA encoding GTFC. Levels of mRNA encoding fructosyltransferase were induced approximately 11.8-fold in biofilm-derived cells. Another notable finding of this study suggests that glucose affects the expression of S. mutans GS5 biofilm genes. In spite of a significant upregulation in biofilm-associated gene expression in the presence of sucrose, the presence of glucose with sucrose reduced expression of most tested genes. Differential analysis of the transcripts from S. mutans, grown in media with various nutrient contents, revealed significant shifts in the expression of the genes involved in biofilm formation. The results presented here provide new insights at the molecular level regarding gene expression in this bacterium when grown under biofilm conditions, allowing a better understanding of the mechanism of biofilm formation by S. mutans.

Publisher

Microbiology Society

Subject

Microbiology (medical),General Medicine,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3