Comparative analysis of BI/NAP1/027 hypervirulent strains reveals novel toxin B-encoding gene (tcdB) sequences

Author:

Stabler Richard A.1,Dawson Lisa F.1,Phua Leslie T. H.1,Wren Brendan W.1

Affiliation:

1. Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK

Abstract

The reported incidence and mortality of Clostridium difficile-associated disease has increased significantly, which in part is likely to be due to the emergence of a new, highly virulent strain in North America and Europe. This epidemic strain, referred to as BI/NAP1/027, has increased virulence, attributed to overexpression of the two toxin-encoding genes, tcdA and tcdB, which may be due to truncation of the negative regulator (tcdC) by a 1 bp deletion. In a previous study of whole-genome comparisons using microarray analysis of 75 C. difficile isolates, it was noted that the 20 027 strains, which formed a hypervirulent clade, possessed a unique hybridization pattern for the 7 toxin B microarray reporters. This unique pattern was conserved in all of these 027 strains. The pattern was different for the 55 non-027 strains tested. These data, along with the knowledge that 027 strains are toxinotype III (i.e. possess a complete tcdB gene of comparable size to toxin reference strain VPI 10463), suggest that the sequence of the N-terminal binding domain of toxin B must be divergent from C. difficile strain 630 (and the other 55 strains tested). Additionally, these 027 strains had comparable hybridization patterns across the whole microarray, as well as for tcdB. Therefore, it was suggested that they share a similar, novel N-terminal binding domain. The aim of this study was to ascertain the sequence variation in tcdB from eight characterized BI/NAP1/027 strains. The study confirmed significant sequence variation of tcdB from the sequenced strain 630 and slight variation in tcdB among the eight 027 strains. These results suggest that toxin B from 027 strains may have a different binding capacity compared with its less-virulent counterparts and may, in addition to the mutated tcdC regulator, be responsible for the increased virulence of 027 strains.

Publisher

Microbiology Society

Subject

Microbiology (medical),General Medicine,Microbiology

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3