Characterization of secreted and intracellular forms of a truncated hepatitis C virus E2 protein expressed by a recombinant herpes simplex virus

Author:

Lucas M.1,Tsitoura E.1,Montoya M.2,Laliotou B.1,Aslanoglou E.1,Kouvatsis V.1,Entwisle C.3,Miller J.3,Klenerman P.4,Hadziyannis A.5,Hadziyannis S.5,Borrow P.2,Mavromara P.1

Affiliation:

1. Molecular Virology Laboratory, Hellenic Pasteur Institute, 127 Vas. Sofias Ave, Athens 115 21, Greece

2. The Edward Jenner Institute for Vaccine Research, Compton, UK

3. Xenova Group plc, Berkshire, UK

4. Nuffield Department of Medicine, University of Oxford, Oxford, UK

5. Second Department of Medicine, Athens University School of Medicine, Greece

Abstract

A replication-defective herpes simplex virus type 1 (HSV-1) recombinant lacking the glycoprotein H (gH)-encoding gene and expressing a truncated form of the hepatitis C (HCV) E2 glycoprotein (E2-661) was constructed and characterized. We show here that cells infected with the HSV/HCV recombinant virus efficiently express the HCV E2-661 protein. Most importantly, cellular and secreted E2-661 protein were both readily detected by the E2-conformational mAb H53 and despite the high expression levels, only limited amounts of misfolded aggregates were detected in either the cellular or secreted fractions. Furthermore, cell-associated and secreted E2-661 protein bound to the major extracellular loop (MEL) of CD81 in a concentration-dependent manner and both were highly reactive with sera from HCV-infected patients. Finally, BALB/c mice immunized intraperitoneally with the recombinant HSV/HCV virus induced high levels of anti-E2 antibodies. Analysis of the induced immunoglobulin G (IgG) isotypes showed high levels of IgG2a while the levels of the IgG1 isotype were significantly lower, suggesting a Th1-type of response. We conclude that the HSV-1 recombinant virus represents a promising tool for production of non-aggregated, immunologically active forms of the E2-661 protein and might have potential applications in vaccine development.

Publisher

Microbiology Society

Subject

Virology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3