A quantitative and highly sensitive luciferase-based assay for bacterial toxins that inhibit protein synthesis

Author:

Zhao Luyi1,Haslam David B1

Affiliation:

1. Departments of Pediatrics and Molecular Microbiology, Washington University School of Medicine, 660 S. Euclid Ave, St Louis, MO 63110, USA

Abstract

Inhibition of protein synthesis is a common mechanism by which bacterial and plant toxins injure human cells. Examples of toxins that inhibit protein synthesis include shiga toxins ofEscherichia coli, diphtheria toxin,Pseudomonasexotoxin A and the plant toxin ricin. In order to facilitate studies on toxin pathogenesis and to enable screening for inhibitors of toxin action, a quantitative and highly sensitive assay for the action of these toxins on mammalian cells was developed. The cDNA encoding destabilized luciferase was cloned into an adenoviral expression plasmid and a high-titre viral stock was prepared. Following transduction of Vero cells, luciferase expression was found to be linear with respect to viral multiplicity of infection. Luciferase expression by as few as 10 cells was readily detected. Treatment of transduced cells with either cycloheximide or shiga toxin resulted in a decrease in luciferase activity, with a half-life ranging from 1 to 2 h. Inhibition of luciferase expression was evident at toxin concentrations as low as 1 pg ml−1. The assay was adapted for use in 24-, 96- and 384-well plates, enabling rapid processing of large numbers of samples. Using this approach, susceptibility of Vero, Hep2, Chang, A549, COS-1 and HeLa cells to three different toxins was determined. These results demonstrate that the luciferase-based assay is applicable to the study of numerous cell types, is quantitative, highly sensitive and reproducible. These features will facilitate studies on pathophysiology of toxin-mediated diseases and allow high-throughput screening for inhibitors of cytotoxicity.

Publisher

Microbiology Society

Subject

Microbiology (medical),General Medicine,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3