Effects of human serum on Balamuthia mandrillaris interactions with human brain microvascular endothelial cells

Author:

Matin Abdul1,Jeong Seok Ryoul1,Stins Monique2,Khan Naveed Ahmed1

Affiliation:

1. School of Biological and Chemical Sciences, Birkbeck College, University of London, London WC1E 7HX, UK

2. Pediatric Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, USA

Abstract

Balamuthia mandrillaris is a free-living amoeba and a causative agent of fatal granulomatous encephalitis. In the transmission of B. mandrillaris into the central nervous system (CNS), haematogenous spread is thought to be the primary step, followed by blood–brain barrier penetration. The objectives of the present study were (i) to determine the effects of serum from healthy individuals on the viability of B. mandrillaris, and (ii) to determine the effects of serum on B. mandrillaris-mediated blood–brain barrier perturbations. It was determined that normal human serum exhibited limited amoebicidal effects, i.e. ∼40 % of trophozoites were killed. The residual subpopulation, although viable, remained static over longer incubations. Using human brain microvascular endothelial cells (HBMEC), which form the blood–brain barrier, it was observed that B. mandrillaris exhibited binding (>80 %) and cytotoxicity (>70 %) to HBMEC. However, normal human serum exhibited more than 60 % inhibition of B. mandrillaris binding and cytotoxicity to HBMEC. ELISAs showed that both serum and saliva samples exhibit the presence of anti-B. mandrillaris antibodies. Western blots revealed that normal human serum reacted with several B. mandrillaris antigens with approximate molecular masses of 148, 115, 82, 67, 60, 56, 44, 42, 40 and 37 kDa. Overall, the results demonstrated that normal human serum has inhibitory effects on B. mandrillaris growth and viability, as well as on their binding and subsequent cytotoxicity to HBMEC. A complete understanding of B. mandrillaris pathogenesis is crucial to develop therapeutic interventions and/or to design preventative measures.

Publisher

Microbiology Society

Subject

Microbiology (medical),General Medicine,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3