Genotypically defined β-lactamase-negative ampicillin-resistant isolates of non-typable Haemophilus influenzae are associated with increased invasion of bronchial epithelial cells in vitro

Author:

Atkins Nicola A.1,Kunde Dale A.1,Zosky Graeme2,Tristram Stephen G.1

Affiliation:

1. School of Health Sciences, University of Tasmania, Launceston, Tasmania, Australia

2. School of Medicine, University of Tasmania, Hobart, Tasmania, Australia

Abstract

The aim of the study was to investigate the association between the presence of altered penicillin-binding protein 3 (PBP3) in non-typable Haemophilus influenzae (NTHi) and an increased capacity to invade bronchial epithelial cells in vitro. A collection of 40 clinical isolates of NTHi comprised of 20 with normal PBP3 and 20 with altered PBP3 (defined by an N526K substitution) was established. The isolates were tested for the ability to invade bronchial epithelial cells in vitro using a 4 h gentamicin survival assay. Invasion was measured as the percentage of intracellular organisms relative to the initial inoculum. The mean invasion rate was 0.00–14.79 % in the normal PBP3 isolates and 0.02–36.69 % in the altered PBP3 isolates. The altered PBP3 isolates had a higher (P = 0.003) mean invasion rate (6.86 %, n = 20) than the normal PBP3 isolates (1.31 %, n = 20). Subsequently, two variants of altered PBP3 (transformant 1, N526K; transformant 2, M377I, S385T, L389F and N526K) were cloned into three of the initial isolates (parents) with normal PBP3 and relatively low invasive ability, and the parents and transformants tested for invasion as above. There was no difference (P = 0.89) in the mean invasion rates for the parents (0.81 %, n = 3), transformants 1 (0.90 %, n = 3) and transformants 2 (1.38 %, n = 3). There was an association between the presence of altered PBP3 in NTHi and an increased capacity to invade BEAS-2B cells in vitro, but cloning experiments suggested that the altered PBP3 was not involved directly in enhanced invasion.

Publisher

Microbiology Society

Subject

Microbiology (medical),General Medicine,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3