A novel bacteriocin-like substance (BLIS) from a pathogenic strain of Vibrio harveyi

Author:

Prasad Sathish1,Morris Peter C.1,Hansen Rasmus1,Meaden Philip G.1,Austin Brian1

Affiliation:

1. School of Life Sciences, John Muir Building, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, UK

Abstract

Inter-strain and inter-species inhibition mediated by a bacteriocin-like inhibitory substance (BLIS) from a pathogenic Vibrio harveyi strain VIB 571 was demonstrated against four isolates of the same species, and one culture each of a Vibrio sp., Vibrio fischeri, Vibrio gazogenes and Vibrio parahaemolyticus. The crude BLIS, which was obtained by ammonium-sulphate precipitation of the cell-free supernatant of a 72 h broth culture of strain VIB 571, was inactivated by lipase, proteinase K, pepsin, trypsin, pronase E, SDS and incubation at ≥60 °C for 10 min. The activity was stable between pH 2–11 for at least 5 h. Anion-exchange chromatography, gel filtration, SDS-PAGE and two-dimensional gel electrophoresis revealed the presence of a single major peak, comprising a protein with a pI of ∼5·4 and a molecular mass of ∼32 kDa. The N-terminal amino acid sequence of the protein comprised Asp-Glu-Tyr-Ile-Ser-X-Asn-Lys-X-Ser-Ser-Ala-Asp-Ile (with X representing cysteine or modified amino acid residues). A similarity search based on the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) generated peptide masses and the N-terminal sequence did not yield any significant matches.

Publisher

Microbiology Society

Subject

Microbiology

Reference46 articles.

1. Vibrio harveyi causes disease in seahorse, Hippocampus sp;Alcaide;J Fish Dis,2001

2. Gapped blast and psi-blast: a new generation of protein database search programs;Altschul;Nucleic Acids Res,1997

3. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding;Bradford;Anal Biochem,1976

4. Purification and characterization of bacteriocin from Klebsiella pneumoniae 158;Chhibber;J Gen Microbiol,1986

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3