Enzymic systems proposed to be involved in the dissimilatory reduction of selenite in the purple non-sulfur bacteria Rhodospirillum rubrum and Rhodobacter capsulatus

Author:

Kessi Janine1

Affiliation:

1. Microbial Ecology Group, Institute of Plant Biology, University of Zürich, Zollikerstrasse 107, CH 8008, Zürich, Switzerland

Abstract

Various enzymic systems, such as nitrite reductase, sulfite reductase and glutathione reductase, have been proposed for, or suspected to be involved in, the reduction of selenite in bacteria. As alphaproteobacteria have been shown to be highly tolerant to transition metal oxyanions, it seemed interesting to investigate the hypothetical involvement of these different enzymes in the reduction of selenite in the purple non-sulfur bacteriaRhodospirillum rubrumandRhodobacter capsulatus. The hypothetical involvement of nitrite reductase and sulfite reductase in the reduction of selenite in these bacteria was investigated by analysing the effects of nitrite and sulfite amendments on the growth and kinetics of selenite reduction. The reduction of selenite was not concomitant with that of either sulfite or nitrite inRs. rubrum, suggesting that the reduction pathways operate independently. InRb. capsulatus, strong interactions were observed between the nitrite reduction and selenite reduction pathways. However, in both organisms, selenite reduction took place during both the growth phase and the stationary phase, indicating that selenite metabolism is constitutively expressed. In contrast, neither nitrite nor sulfite was transformed during stationary phase, suggesting that the metabolism of both ions is induced, which implies that identical reduction pathways for selenite and nitrite or selenite and sulfite are excluded. Buthionine sulfoximine (BSO,S-n-butyl homocysteine sulfoximine), a specific inhibitor of glutathione synthesis, was used to depress the intracellular glutathione level. In stationary-phase cultures of bothRs. rubrumandRb. capsulatusamended with BSO, the rate of reduction of selenite was slowed, indicating that glutathione may be involved in the dissimilatory reduction of selenite in these organisms. The analysis of the headspace gases of the cultures indicated that the synthesis of methylated selenium compounds was prevented in the presence of 3·0 mM BSO in both organisms, implying that glutathione is also involved in the transformation of selenite to volatile selenium compounds.

Publisher

Microbiology Society

Subject

Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3