Factors triggering type III secretion in Pseudomonas aeruginosa

Author:

Kim Jaewha1,Ahn Kyungseop1,Min Sungran1,Jia Jinghua1,Ha Unhwan1,Wu Donghai2,Jin Shouguang1

Affiliation:

1. Department of Molecular Genetics and Microbiology, PO Box 100266, University of Florida, Gainesville, FL 32610, USA

2. Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangzhou, China

Abstract

The type III secretion system ofPseudomonas aeruginosais tightly regulated by various environmental signals, such as low calcium and contact with the host cell. However, the exact signals triggering type III secretion are unknown. The present study describes the finding that secretion ofP. aeruginosatype III effector molecules requires protein factors from serum and L broth, designated type III secretion factors (TSFs), in addition to the low-calcium environment. In the absence of TSF or calcium chelator EGTA, basal levels of type III effector molecules are accumulated intracellularly. Addition of TSF and EGTA together effectively triggers the secretion of pre-existing effector molecules in a short time, even before the active expression of type III genes; thus, active type III gene expression does not seem to be a prerequisite for type III secretion. A search for TSF molecules in serum and L broth resulted in the identification of albumin and casein as the functional TSF molecules. Although there is no clear sequence similarity between albumin and casein, both proteins are known to have a low-affinity, high-capacity calcium-binding property. Tests of well-studied calcium-binding proteins seemed to indicate that low-affinity calcium-binding proteins have TSF activity, although the requirement of low-affinity calcium-binding ability for the TSF activity is not clear.P. aeruginosaseems to have evolved a sensing mechanism to detect target cells for type III injection through host-derived proteins in combination with a low-calcium signal. Disruption of the bacterial ability to sense low calcium or TSF might be a valid avenue to the effective control of this bacterial pathogen.

Publisher

Microbiology Society

Subject

Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3