Novel surface layer protein genes in Bacillus sphaericus associated with unusual insertion elements

Author:

Pollmann Katrin1,Raff Johannes1,Schnorpfeil Michaela1,Radeva Galina1,Selenska-Pobell Sonja1

Affiliation:

1. Institute of Radiochemistry, Forschungszentrum Rossendorf, D-01314 Dresden, Germany

Abstract

The surface layer (S-layer) protein genes of the uranium mining waste pile isolateBacillus sphaericusJG-A12 and of its relativeB. sphaericusNCTC 9602 were analysed. The almost identical N-termini of the two S-layer proteins possess a unique structure, comprising three N-terminal S-layer homologous (SLH) domains. The central parts of the proteins share a high homology and are related to the S-layer proteins ofB. sphaericusCCM 2177 and P-1. In contrast, the C-terminal parts of the S-layer proteins of JG-A12 and NCTC 9602 differ significantly between each other. Surprisingly, the C-terminal part of the S-layer protein of JG-A12 shares a high identity with that of the S-layer protein ofB. sphaericusCCM 2177. In both JG-A12 and NCTC 9602 the chromosomal S-layer protein genes are followed by a newly identified putative insertion element comprising three ORFs, which encode a putative transposase, a putative integrase/recombinase and a putative protein containing a DNA binding helix–turn–helix motif, and the S-layer-protein-like gene copiessllA(9602) orsllB(JG-A12). Interestingly, bothB. sphaericusstrains studied were found to contain an additional, plasmid-located and silent S-layer protein gene with the same sequence assllAandsllB. The primary structures of the corresponding putative proteins are almost identical in both strains. The N-terminal and central parts of these S-layer proteins share a high identity with those of the chromosomally encoded functional S-layer proteins. Their C-terminal parts, however, differ significantly. These results strongly suggest that the S-layer protein genes have evolved via horizontal transfer of genetic information followed by DNA rearrangements mediated by mobile elements.

Publisher

Microbiology Society

Subject

Microbiology

Reference70 articles.

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3