Haemophilus parasuis invades porcine brain microvascular endothelial cells

Author:

Vanier Ghyslaine1,Szczotka Anna2,Friedl Peter3,Lacouture Sonia1,Jacques Mario21,Gottschalk Marcelo21

Affiliation:

1. Groupe de Recherche sur les Maladies Infectieuses du Porc (GREMIP), Faculté de Médecine Vétérinaire, Université de Montréal, Québec, Canada

2. Canadian Research Network on Bacterial Pathogens of Swine, Faculté de Médecine Vétérinaire, Université de Montréal, Québec, Canada

3. Institute für Biochemie, Technische Hochschule Darmstadt, Petersenstrasse 22, 64287 Darmstadt, Germany

Abstract

Haemophilus parasuis, an important swine pathogen, is the aetiological agent of Glässer's disease. It is responsible for cases of polyserositis, meningitis and pneumonia in young pigs. To date, 15 serotypes have been described, although several non-typable isolates are frequently recovered from diseased animals. The pathogenesis of H. parasuis infection is poorly understood. To cause meningitis, H. parasuis would have to cross the blood–brain barrier (BBB), composed of brain microvascular endothelial cells (BMEC). The objective of this study was to investigate the ability of H. parasuis to interact with porcine brain microvascular endothelial cells (PBMEC). It was demonstrated that the serotype 5 reference strain of H. parasuis, Nagasaki (originally recovered from a case of meningitis), was able to adhere at very high levels to and, most importantly, invade PBMEC. These capacities were confirmed by electron microscopy. Actinobacillus pleuropnemoniae serotype 7 (strain WF 83), used as negative control, was not able to adhere to or invade PBMEC. Comparisons of the levels of adhesion and invasion by several H. parasuis field strains from different serotypes isolated from cases of either meningitis or pneumonia showed that isolates of serotypes 4 and 5 had a higher invasion capacity than isolates belonging to other serotypes. Inhibition studies demonstrated that PBMEC invasion by H. parasuis required rearrangement of actin microfilaments and microtubular cytoskeletal elements but not active bacterial DNA, RNA or protein synthesis. Characterization studies demonstrated that proteinaceous invasin(s) does not seem to play a major role in entry of H. parasuis into PBMEC. Intracellular viable H. parasuis were found in PBMEC up to 6 h after antibiotic treatment. Even at high bacterial doses, H. parasuis was not toxic to PBMEC. In swine, the invasion of endothelial cells of the BBB may play an important role in the pathogenesis of meningitis caused by H. parasuis.

Publisher

Microbiology Society

Subject

Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3