Biofilm formation in Campylobacter jejuni

Author:

Joshua G. W. P1,Guthrie-Irons C.1,Karlyshev A. V.1,Wren B. W.1

Affiliation:

1. Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK

Abstract

The major gastrointestinal pathogen Campylobacter jejuni is shown to exist as three forms of monospecies biofilm in liquid culture. It attaches to a glass surface; forms an unattached aggregate (floc); and forms a pellicle at the liquid–gas interface. The three forms of biofilm resemble each other when examined by scanning electron microscopy. The biofilm mode of growth confers protection against environmental stress, the microaerobic bacteria in flocs surviving up to 24 days at ambient temperature and atmosphere compared to 12 days survival by planktonic bacteria. The wild-type strains C. jejuni 33106, 32799, 33084 and 31485 did not form flocs, and floc formation was reduced in strains mutant in a putative flagellar protein (FliS) and in a phosphate acetyltransferase (Cj0688). All other strains tested, including strains with mutations affecting capsular polysaccharide (kpsM), flagella (maf5), protein glycosylation (pglH) and lipo-oligosaccharide (neuB1) formed flocs. Similarly, all strains tested formed a pellicle and attached to glass except the aflagellate mutant maf5; pellicle formation was reduced in fliS and cj0688 mutants. Different mechanisms, therefore, may control formation of different forms of biofilm. It is proposed that these poorly characterized forms of growth are important for the persistence of C. jejuni in the environment and may in part explain the high incidence of Campylobacter-associated food borne disease.

Publisher

Microbiology Society

Subject

Microbiology

Reference42 articles.

1. Experimental Campylobacter jejuni infection in humans;Black;J Infect Dis,1988

2. Extended survival and persistence of Campylobacter spp. in water and aquatic biofilms and their detection by immunofluorescent-antibody and -rRNA staining;Buswell;Appl Environ Microbiol,1998

3. Microbial biofilms;Costerton;Annu Rev Microbiol,1995

4. Common gastrointestinal infections;Communicable Diseases Report Weekly England and Wales,2000

5. Exopolysaccharide production is required for development of Escherichia coli K-12 biofilm architecture;Danese;J Bacteriol,2000

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3