The HA2 haemagglutinin domain of the lysine-specific gingipain (Kgp) of Porphyromonas gingivalis promotes μ-oxo bishaem formation from monomeric iron(III) protoporphyrin IX

Author:

Smalley J. W.1,Birss A. J.1,Szmigielski B.2,Potempa J.32

Affiliation:

1. The University of Liverpool, Oral Microbiology Group, Department of Clinical Dental Sciences, The Edwards Building, Daulby Street, Liverpool L69 3GN, UK

2. Department of Microbiology, Faculty of Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Krakow, Poland

3. Department of Biochemistry and Molecular Biology, Life Science Building, University of Georgia, Athens, GA 30602, USA

Abstract

The lysine- and arginine-specific gingipains (Kgp, and RgpA and RgpB) are the major proteinases produced by the black-pigmented periodontopathogenPorphyromonas gingivalis. They play a role in degrading host proteins, including haemoglobin, from which is formed the μ-oxo bishaem complex of iron(III) protoporphyrin IX, [Fe(III)PPIX]2O, the major haem component of the black pigment. Kgp and RgpA bind haem and haemoglobin via the haemagglutinin-adhesin 2 (HA2) domain, but the role of this domain in the formation of μ-oxo bishaem-containing pigment is not known. UV-visible spectroscopy was used to examine the interaction of iron(III) protoporphyrin IX monomers [Fe(III)PPIX.OH] with recombinant HA2 and purified HRgpA, Kgp and RgpB gingipains. The HA2 domain reacted with Fe(III)PPIX.OH to form μ-oxo bishaem, the presence of which was confirmed by Fourier transform infrared spectroscopy. Both HRgpA and Kgp, but not RgpB, also mediated μ-oxo bishaem formation and aggregation. It is concluded that the Arg- and Lys-gingipains with HA2 haemagglutinin domains may play a crucial role in haem-pigment formation by converting Fe(III)PPIX.OH monomers into [Fe(III)PPIX]2O and promoting their aggregation.

Publisher

Microbiology Society

Subject

Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3