Genetic and functional analyses of the lgtH gene, a member of the β-1,4-galactosyltransferase gene family in the genus Neisseria

Author:

Zhu Peixuan1,Boykins Robert A.1,Tsai Chao-Ming1

Affiliation:

1. Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, FDA, 8800 Rockville Pike, Bethesda, MD 20892, USA

Abstract

Lipooligosaccharide (LOS) is a major virulence factor of the pathogenic Neisseria. Three galactosyltransferase genes, lgtB, lgtE and lgtH, responsible for the biosynthesis of LOS oligosaccharide chains, were analysed in five Neisseria species. The function of lgtH in Neisseria meningitidis 6275 was determined by mutagenesis and chemical characterization of the parent and mutant LOS chains. The chemical characterization included SDS-PAGE, immunoblot, hexose and mass spectrometry analyses. Compared with the parent LOS, the mutant LOS lacked galactose, and its oligosaccharide decreased by three or four sugar units in matrix-assisted laser desorption ionization (MALDI)-MS analysis. The results show that lgtH encodes a β-1,4-galactosyltransferase, and that the glucose moiety linked to heptose (Hep) in the α chain is the acceptor site in the biosynthesis of Neisseria LOS. To understand the sequence diversity and relationships of lgtB, lgtE and lgtH, the entire lgt-1 locus was further sequenced in three N. meningitidis strains and three commensal Neisseria strains, and compared with the previously reported lgt genes from Neisseria species. Comparison of the protein sequences of the three enzymes LgtB, LgtE and LgtH showed a conserved N-terminal region, and a highly variable C-terminal region, suggesting functional constraint for substrate and acceptor specificity, respectively. The analyses of allelic variation and evolution of 23 lgtB, 12 lgtE and 14 lgtH sequences revealed a distinct evolutionary history of these genes in Neisseria. For example, the splits graph of lgtE displayed a network evolution, indicating frequent DNA recombination, whereas splits graphs of lgtB and lgtH displayed star-tree-like evolution, indicating the accumulation of point mutations. The data presented here represent examples of the evolution and variation of prokaryotic glycosyltransferase gene families. These imply the existence of multiple enzyme isoforms for biosynthesis of a great diversity of oligosaccharides in nature.

Publisher

Microbiology Society

Subject

Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3