Copper tolerance of the thermoacidophilic archaeon Sulfolobus metallicus: possible role of polyphosphate metabolism

Author:

Remonsellez Francisco1,Orell Alvaro1,Jerez Carlos A.1

Affiliation:

1. Laboratory of Molecular Microbiology and Biotechnology, Department of Biology, Faculty of Sciences, University of Chile, Santiago 1, Casilla 653, Santiago, Chile

Abstract

It has been postulated that inorganic polyphosphate (polyP) and transport of metal–phosphate complexes could participate in heavy metal tolerance in some bacteria. To study if such a system exists in archaea, the presence of polyP was determined by the electron energy loss spectroscopy (EELS) procedure and quantified by using specific enzymic methods inSulfolobus acidocaldarius,Sulfolobus metallicusandSulfolobus solfataricus. All three micro-organisms synthesized polyP during growth, but onlyS. metallicusgreatly accumulated polyP granules. The differences in the capacity to accumulate polyP between these archaea may reflect adaptive responses to their natural environment. Thus,S. metallicuscould grow in and tolerate up to 200 mM copper sulfate, with a concomitant decrease in its polyP levels with increasing copper concentrations. On the other hand,S. solfataricuscould not grow in or tolerate more than 1–5 mM copper sulfate, most likely due to its low levels of polyP. ShiftingS. metallicuscells to copper sulfate concentrations up to 100 mM led to a rapid increase in their exopolyphosphatase (PPX) activity which was concomitant in time with a decrease in their polyP levels and a stimulation of phosphate efflux. Furthermore, copper in the range of 10 μM greatly stimulated PPX activity in cell-free extracts fromS. metallicus. The results strongly suggest that a metal tolerance mechanism mediated through polyP is functional in members of the genusSulfolobus. This ability to accumulate and hydrolyse polyP may play an important role not only in the survival of these micro-organisms in sulfidic mineral environments containing high toxic metals concentrations, but also in their applications in biomining.

Publisher

Microbiology Society

Subject

Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3