Surface ultrastructure and elasticity in growing tips and mature regions of Aspergillus hyphae describe wall maturation

Author:

Ma Hui1,Snook Laelie A.1,Kaminskyj Susan G. W.2,Dahms Tanya E. S.1

Affiliation:

1. Department of Chemistry and Biochemistry, University of Regina, 3737 Wascana Parkway, Regina, SK, Canada S4S 0A2

2. Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada S7N 5E2

Abstract

This study reports the first direct, high-resolution physical and structural evidence of wall changes during hyphal tip growth, visualized by atomic force microscopy (AFM) inAspergillus nidulans. Images from AFM and cryo-scanning electron microscopy provided comparable information, but AFM was also able to image and physically probe living cells. AFM images showed changes in the surface ultrastructure ofA. nidulanshyphae, from newly deposited walls at hyphal tips to fully mature walls, as well as additional changes at young branches arising from mature walls. Surface architecture during wall maturation correlated with changes in the relative viscoelasticity (compliance per unit applied force) of walls measured by force spectroscopy (FS) in growingA. nidulanshyphae. Growing tips showed greater viscoelasticity than mature walls, despite equal support from turgor. Branch tips had comparable viscoelasticity to hyphal tips, unlike the mature wall from which they grew. FS also revealed differences in surface hydrophilicity between newly deposited and mature walls, with the tips being more hydrophilic. The hydrophilicity of young branch tips was similar to that of hyphal tips, and different from that of mature walls. Taken together, AFM images and FS data suggest that theA. nidulanswall matures following deposition at the hyphal tip.

Publisher

Microbiology Society

Subject

Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3