Influence of the regulatory protein RsmA on cellular functions in Pseudomonas aeruginosa PAO1, as revealed by transcriptome analysis

Author:

Burrowes Elizabeth1,Baysse Christine1,Adams Claire1,O'Gara Fergal1

Affiliation:

1. BIOMERIT Research Centre, Department of Microbiology, National University of Ireland, Cork, Ireland

Abstract

RsmA is a posttranscriptional regulatory protein in Pseudomonas aeruginosa that works in tandem with a small non-coding regulatory RNA molecule, RsmB (RsmZ), to regulate the expression of several virulence-related genes, including the N-acyl-homoserine lactone synthase genes lasI and rhlI, and the hydrogen cyanide and rhamnolipid biosynthetic operons. Although these targets of direct RsmA regulation have been identified, the full impact of RsmA on cellular activities is not as yet understood. To address this issue the transcriptome profiles of P. aeruginosa PAO1 and an isogenic rsmA mutant were compared. Loss of RsmA altered the expression of genes involved in a variety of pathways and systems important for virulence, including iron acquisition, biosynthesis of the Pseudomonas quinolone signal (PQS), the formation of multidrug efflux pumps, and motility. Not all of these effects can be explained through the established regulatory roles of RsmA. This study thus provides both a first step towards the identification of further genes under RsmA posttranscriptional control in P. aeruginosa and a fuller understanding of the broader impact of RsmA on cellular functions.

Publisher

Microbiology Society

Subject

Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3