Differential regulation of urease activity in Helicobacter hepaticus and Helicobacter pylori

Author:

Belzer Clara1,Stoof Jeroen1,Beckwith Catherine S.2,Kuipers Ernst J.1,Kusters Johannes G.1,van Vliet Arnoud H. M.1

Affiliation:

1. Department of Gastroenterology and Hepatology, Erasmus MC – University Medical Center, Dr Molewaterplein 40, 3015 GD Rotterdam, The Netherlands

2. Department of Comparative Medicine, Stanford University School of Medicine, Stanford, CA, USA

Abstract

Helicobacter hepaticus is a pathogen of rodents, which causes diverse enteric and hepatic inflammatory diseases and malignancies. The urease enzyme is an important colonization factor of gastric Helicobacter species like Helicobacter pylori, but little is known about the role and regulation of urease in enterohepatic Helicobacter species. Here it is reported that urease activity of H. hepaticus does not contribute to acid resistance, and that it is nickel-responsive at the post-translational level. H. hepaticus strain ATCC 51449 did not grow or survive at pH 3·0, and supplementation with urea or NiCl2 did not abrogate this acid sensitivity. Furthermore, urease enzyme activity of H. hepaticus was acid-independent, which contrasts with the acid-induced urease system of H. pylori. Nickel supplementation of Brucella medium resulted in a tenfold increase in urease activity in both H. hepaticus and H. pylori, but the maximum level of urease activity in H. hepaticus was still three- to fivefold lower when compared to H. pylori in the same conditions. The increase in urease activity of H. hepaticus was not associated with elevation of urease mRNA or protein levels. Inhibition of protein synthesis by chloramphenicol did not affect nickel-responsive induction of urease activity in H. hepaticus, and confirmed that nickel induction occurs at the post-translational level, probably by activation of preformed apo-enzyme. In conclusion, both the role of the urease enzyme and the regulation of urease activity differ between the enterohepatic pathogen H. hepaticus and the gastric pathogen H. pylori.

Publisher

Microbiology Society

Subject

Microbiology

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3