Duplication of the chromosomal bla SHV-11 gene in a clinical hypermutable strain of Klebsiella pneumoniae

Author:

Duvernay Chloé1,Coulange Laure1,Dutilh Brigitte2,Dubois Véronique1,Quentin Claudine1,Arpin Corinne1

Affiliation:

1. CNRS UMR 5234, Laboratoire de Microbiologie Cellulaire et Moléculaire et Pathogénicité, Université Victor Segalen Bordeaux 2, Bordeaux, France

2. Laboratoire d'Analyses Médicales, Bordeaux, France

Abstract

In a collection of 110 clinical isolates of Klebsiella pneumoniae, a single strain, Kp593, was found to exhibit a mutator phenotype with a rifampicin mutation frequency 100-fold higher than the modal value for this species. Complementation experiments with the wild-type MutL, one of the main components of the methyl-directed mismatch repair system, allowed the mutator phenotype to be reversed. Sequencing revealed substitution of the conserved residue Lys307 to Arg and site-directed mutagenesis followed by complementation experiments confirmed the critical role of this mutation. The patient infected with Kp593 relapsed a month later and the strain isolated then, Kp869, was identical to Kp593, as verified by PFGE analysis. Phenotypically, Kp869 colonies were more mucoid than those of Kp593, probably due to increased capsule synthesis as shown by electron microscopy. In addition, Kp869 exhibited a 16-fold higher amoxicillin resistance level related to a 36.4 kb tandem duplication encompassing the chromosomal bla SHV-11 gene, which was unstable in vitro. These data suggest that the mutator phenotype found in Kp593/Kp869 is associated with beneficial mutations conferring a selective advantage, such as increased virulence factor production and antibiotic resistance. The latter was due to resistance gene duplication, an event rarely described in natural isolates. This is the first description of the in vivo occurrence of gene duplication in a mutator background.

Publisher

Microbiology Society

Subject

Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3