A Mig-14-like protein (PA5003) affects antimicrobial peptide recognition in Pseudomonas aeruginosa

Author:

Jochumsen Nicholas1,Liu Yang1,Molin Søren1,Folkesson Anders1

Affiliation:

1. Center for Systems Microbiology, DTU-Systems Biology, Building 301, Technical University of Denmark, DK-2800 Lyngby, Denmark

Abstract

The evolution of antibiotic resistance in pathogenic bacteria is a growing global health problem which is gradually making the treatment of infectious diseases less efficient. Antimicrobial peptides are small charged molecules found in organisms from the complete phylogenetic spectrum. The peptides are attractive candidates for novel drug development due to their activity against bacteria that are resistant to conventional antibiotics, and reports of peptide resistance are rare in the clinical setting. Paradoxically, many clinically relevant bacteria have mechanisms that can recognize and respond to the presence of cationic antimicrobial peptides (CAMPs) in the environment by changing the properties of the microbial surface thereby increasing the tolerance of the microbes towards the peptides. In Pseudomonas aeruginosa an essential component of this inducible tolerance mechanism is the lipopolysaccharide modification operon arnBCADTEF–PA3559 which encodes enzymes required for LPS alterations leading to increased antimicrobial peptide tolerance. The expression of the operon is induced by the presence of CAMPs in the environment but the molecular mechanisms underlying the cellular recognition of the peptides are poorly elucidated. In this work, we investigate the factors influencing arnB expression by transposon mutagenesis and arnB promoter green fluorescent protein reporters. We have identified a novel gene encoding a Mig-14-like protein that is required for recognition of the CAMPs colistin and Novispirin G10 by P. aeruginosa. Moreover, we show that this gene is also required for the formation of CAMP-tolerant subpopulations in P. aeruginosa hydrodynamic flow chamber biofilms.

Funder

Danish Research Council

Publisher

Microbiology Society

Subject

Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3