Biosynthesis of UDP-xylose and UDP-arabinose in Sinorhizobium meliloti 1021: first characterization of a bacterial UDP-xylose synthase, and UDP-xylose 4-epimerase

Author:

Gu Xiaogang1,Lee Sung G.1,Bar-Peled Maor21

Affiliation:

1. Complex Carbohydrate Research Center (CCRC), University of Georgia, Athens, GA 30602, USA

2. Department of Plant Biology, University of Georgia, Athens, GA 30602, USA

Abstract

Sinorhizobium meliloti is a soil bacterium that fixes nitrogen after being established inside nodules that can form on the roots of several legumes, including Medicago truncatula. A mutation in an S. meliloti gene (lpsB) required for lipopolysaccharide synthesis has been reported to result in defective nodulation and an increase in the synthesis of a xylose-containing glycan. Glycans containing xylose as well as arabinose are also formed by other rhizobial species, but little is known about their structures and the biosynthetic pathways leading to their formation. To gain insight into the biosynthesis of these glycans and their biological roles, we report the identification of an operon in S. meliloti 1021 that contains two genes encoding activities not previously described in bacteria. One gene encodes a UDP-xylose synthase (Uxs) that converts UDP-glucuronic acid to UDP-xylose, and the second encodes a UDP-xylose 4-epimerase (Uxe) that interconverts UDP-xylose and UDP-arabinose. Similar genes were also identified in other rhizobial species, including Rhizobium leguminosarum, suggesting that they have important roles in the life cycle of this agronomically important class of bacteria. Functional studies established that recombinant SmUxs1 is likely to be active as a dimer and is inhibited by NADH and UDP-arabinose. SmUxe is inhibited by UDP-galactose, even though this nucleotide sugar is not a substrate for the 4-epimerase. Unambiguous evidence for the conversions of UDP-glucuronic acid to UDP-α-d-xylose and then to UDP-β-l-arabinose (UDP-arabinopyranose) was obtained using real-time 1H-NMR spectroscopy. Our results provide new information about the ability of rhizobia to form UDP-xylose and UDP-arabinose, which are then used for the synthesis of xylose- and arabinose-containing glycans.

Publisher

Microbiology Society

Subject

Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3