The Aspergillus fumigatus toxin fumagillin suppresses the immune response of Galleria mellonella larvae by inhibiting the action of haemocytes

Author:

Fallon John P.1,Reeves Emer P.2,Kavanagh Kevin1

Affiliation:

1. Medical Mycology Unit, Department of Biology, National Institute for Cellular Biotechnology, National University of Ireland Maynooth, Co. Kildare, Ireland

2. Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland

Abstract

Larvae of Galleria mellonella are widely used to evaluate microbial virulence and to assess the in vivo efficacy of antimicrobial agents. The aim of this work was to examine the ability of an Aspergillus fumigatus toxin, fumagillin, to suppress the immune response of larvae. Administration of fumagillin to larvae increased their susceptibility to subsequent infection with A. fumigatus conidia (P = 0.0052). It was demonstrated that a dose of 2 µg fumagillin ml−1 reduced the ability of insect immune cells (haemocytes) to kill opsonized cells of Candida albicans (P = 0.039) and to phagocytose A. fumigatus conidia (P = 0.016). Fumagillin reduced the oxygen uptake of haemocytes and decreased the translocation of a p47 protein which is homologous to p47phox, a protein essential for the formation of a functional NADPH oxidase complex required for superoxide production. In addition, toxin-treated haemocytes showed reduced levels of degranulation as measured by the release of a protein showing reactivity to an anti-myeloperoxidase antibody (P<0.049) that was subsequently identified by liquid chromatography-MS analysis as prophenoloxidase. This work demonstrates that fumagillin suppresses the immune response of G. mellonella larvae by inhibiting the action of haemocytes and thus renders the larvae susceptible to infection. During growth of the fungus in the larvae, this toxin, along with others, may facilitate growth by suppressing the cellular immune response.

Funder

Environmental Protection Agency

Publisher

Microbiology Society

Subject

Microbiology

Cited by 70 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3