Affiliation:
1. Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona, Diagonal 645, 08071 Barcelona, Spain
Abstract
By the analysis of the Aeromonas hydrophila ATCC7966T genome we identified A. hydrophila AH-3 MotY. A. hydrophila MotY, like MotX, is essential for the polar flagellum function energized by an electrochemical potential of Na+ as coupling ion, but is not involved in lateral flagella function energized by the proton motive force. Thus, the A. hydrophila polar flagellum stator is a complex integrated by two essential proteins, MotX and MotY, which interact with one of two redundant pairs of proteins, PomAB and PomA2B2. In an A. hydrophila motX mutant, polar flagellum motility is restored by motX complementation, but the ability of the A. hydrophila motY mutant to swim is not restored by introduction of the wild-type motY alone. However, its polar flagellum motility is restored when motX and -Y are expressed together from the same plasmid promoter. Finally, even though both the redundant A. hydrophila polar flagellum stators, PomAB and PomA2B2, are energized by the Na+ ion, they cannot be exchanged. Furthermore, Vibrio parahaemolyticus PomAB and Pseudomonas aeruginosa MotAB or MotCD are unable to restore swimming motility in A. hydrophila polar flagellum stator mutants.
Funder
Ministerio de Educación, Ciencia y Deporte
Generalitat de Catalunya (Centre de Referència en Biotecnologia
Ministerio de Sanidad
Plan Nacional de I+D
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献