The role of Klebsiella pneumoniae rmpA in capsular polysaccharide synthesis and virulence revisited

Author:

Hsu Chun-Ru1,Lin Tzu-Lung1,Chen You-Ci1,Chou Huei-Chi1,Wang Jin-Town21

Affiliation:

1. Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan

2. Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan

Abstract

Klebsiella pneumoniae community-acquired pyogenic liver abscess (PLA) is an emerging infectious disease. The rmpA gene (for regulator of mucoid phenotype A) has been reported to be associated with PLA in prevalence studies. NTUH-K2044, a K1 PLA isolate, carries three rmpA/A2 genes: two large-plasmid-carried genes (p-rmpA and p-rmpA2) and one chromosomal gene (c-rmpA). In this study, we re-examined the role of rmpA/A2 in PLA pathogenesis to clarify the relationship of rmpA/A2 and capsular serotype to virulence. Using isogenic gene deletion strains and complemented strains of NTUH-K2044, we demonstrated that only p-rmpA enhanced expression of capsular polysaccharide synthesis (cps) genes and capsule production. Nevertheless, the lethal dose and in vivo competitive index indicated that p-rmpA does not promote virulence in mice. The prevalence of these three rmpA/A2 and capsular types in 206 strains was investigated. This revealed a correlation of rmpA/A2 with six PLA-related capsular types (K1, K2, K5, K54, K57 and KN1). However, the correlation of rmpA/A2 with K1 strains from the West was less obvious than with the strains from Asia (17/22 vs 39/39, P = 0.0019). Among the three rmpA/A2 genes, p-rmpA was the most prevalent. Due to the strong correlation with PLA-related capsular types, p-rmpA could serve as a surrogate marker for PLA. We found an association of p-rmpA with three widely spaced loci in a large plasmid (30/32). Therefore, rmpA could be co-inherited together with virulence genes carried by this plasmid.

Funder

National Taiwan University

National Science Council

Publisher

Microbiology Society

Subject

Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3