Rapid and accurate detection of Shiga toxin-producing Escherichia coli (STEC) serotype O157 : H7 by mass spectrometry directly from the isolate, using 10 potential biomarker peaks and machine learning predictive models

Author:

Manfredi Eduardo1,Rocca María Florencia23,Zintgraff Jonathan23ORCID,Irazu Lucía3,Miliwebsky Elizabeth1,Carbonari Carolina1,Deza Natalia1,Prieto Monica23,Chinen Isabel1

Affiliation:

1. Servicio Fisiopatogenia, Instituto Nacional de Enfermedades Infecciosas (INEI) – Administración Nacional de Laboratorios e Institutos de Salud (ANLIS) 'Dr Carlos G. Malbrán', Buenos Aires, Argentina

2. Red Nacional de Espectrometría de Masas aplicada a la Microbiología Clínica (RNEM Argentina), Buenos Aires, Argentina

3. Instituto Nacional de Enfermedades Infecciosas (INEI) – Administración Nacional de Laboratorios e Institutos de Salud (ANLIS) 'Dr Carlos G. Malbrán', Buenos Aires, Argentina

Abstract

Introduction. The different pathotypes of Escherichia coli can produce a large number of human diseases. Surveillance is complex since their differentiation is not easy. In particular, the detection of Shiga toxin-producing Escherichia coli (STEC) serotype O157 : H7 consists of stool culture of a diarrhoeal sample on enriched and/or selective media and identification of presumptive colonies and confirmation, which require a certain level of training and are time-consuming and expensive. Hypothesis. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is a quick and easy way to obtain the protein spectrum of a microorganism, identify the genus and species, and detect potential biomarker peaks of certain characteristics. Aim. To verify the usefulness of MALDI-TOF MS to rapidly identify and differentiate STEC O157 : H7 from other E. coli pathotypes. Methodology. The direct method was employed, and the information obtained using Microflex LT platform-based analysis from 60 clinical isolates (training set) was used to detect differences between the peptide fingerprints of STEC O157 : H7 and other E. coli strains. The protein profiles detected laid the foundations for the development and evaluation of machine learning predictive models in this study. Results. The detection of potential biomarkers in combination with machine learning predictive models in a new set of 142 samples, called ‘test set‘, achieved 99.3 % (141/142) correct classification, allowing us to distinguish between the isolates of STEC O157 : H7 and the other E. coli group. Great similarity was also observed with respect to this last group and the Shigella species when applying the potential biomarkers algorithm, allowing differentiation from STEC O157 : H7 Conclusion. Given that STEC O157 : H7 is the main causal agent of haemolytic uremic syndrome, and based on the performance values obtained in the present study (sensitivity=98.5 % and specificity=100.0 %), the implementation of this technique provides a proof of principle for MALDI-TOF MS and machine learning to identify biomarkers to rapidly screen or confirm STEC O157 : H7 versus other diarrhoeagenic E. coli in the future.

Publisher

Microbiology Society

Subject

Microbiology (medical),General Medicine,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3