Eucalyptol inhibits biofilm formation of Streptococcus pyogenes and its mediated virulence factors

Author:

Vijayakumar Karuppiah1ORCID,Manigandan Vajravelu1,Jeyapragash Danaraj2,Bharathidasan Veeraiyan1,Anandharaj Balaiyan3,Sathya Madhavan3

Affiliation:

1. Centre of advanced study in Marine Biology, Annamalai University, Parangipettai – 608 502, Tamil Nadu, India

2. Department of Biotechnology, Karpagam academy of higher education, Eachanari, Coimbatore-641 021, Tamil Nadu, India

3. Department of Botany, Annamalai University, Annamalai Nagar, Chidambaram – 608 002, Tamil Nadu, India

Abstract

Introduction. Streptococcus pyogenes is a diverse virulent synthesis pathogen responsible for invasive systemic infections. Establishment of antibiotic resistance in the pathogen has produced a need for new antibiofilm agents to control the biofilm formation and reduce biofilm-associated resistance development. Aim. The present study investigates the in vitro antibiofilm activity of eucalyptol against S. pyogenes . Methodology. The antibiofilm potential of eucalyptol was assessed using a microdilution method and their biofilm inhibition efficacy was visualized by microscopic analysis. The biochemical assays were performed to assess the influence of eucalyptol on virulence productions. Real-time PCR analysis was performed to evaluate the expression profile of the virulence genes. Results. Eucalyptol showed significant antibiofilm potential in a dose-dependent manner without affecting bacterial growth. Eucalyptol at 300 µg ml−1 (biofilm inhibitory concentration) significantly inhibited the initial stage of biofilm formation in S. pyogenes . However, eucalyptol failed to diminish the mature biofilms of S. pyogenes at biofilm inhibitory concentration and it effectively reduced the biofilm formation on stainless steel, titanium, and silicone surfaces. The biochemical assay results revealed that eucalyptol greatly affects the cell-surface hydrophobicity, auto-aggregation, extracellular protease, haemolysis and hyaluronic acid synthesis. Further, the gene-expression analysis results showed significant downregulation of virulence gene expression upon eucalyptol treatment. Conclusion. The present study suggests that eucalyptol applies its antibiofilm assets by intruding the initial biofilm formation of S. pyogenes . Supplementary studies are needed to understand the mode of action involved in biofilm inhibition.

Publisher

Microbiology Society

Subject

Microbiology (medical),General Medicine,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3