Invasion and diversity in Pseudomonas aeruginosa urinary tract infections

Author:

Newman JN1ORCID,Floyd RV2ORCID,Fothergill JL1ORCID

Affiliation:

1. Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK

2. School of Life Sciences, University of Liverpool, Liverpool, UK

Abstract

Introduction. P. aeruginosa is an opportunistic Gram-negative pathogen frequently isolated in urinary tract infections (UTI) affecting elderly and catheterized patients and associated with ineffective antibiotic treatment and poor clinical outcomes. Gap statement. Invasion has been shown to play an important role in UTI caused by E. coli but has only recently been studied with P. aeruginosa . The ability of P. aeruginosa to adapt and evolve in chronic lung infections is associated with resistance to antibiotics but has rarely been studied in P. aeruginosa UTI populations. Aim. We sought to determine whether phenotypic and genotypic heterogeneity exists in P. aeruginosa UTI isolates and whether, like urinary pathogenic Escherichia coli , these could invade human bladder epithelial cells – two factors that could complicate antibiotic treatment. Methodology. P. aeruginosa UTI samples were obtained from five elderly patients at the Royal Liverpool University Hospital as part of routine diagnostics. Fourty isolates from each patient sample were screened for a range of phenotypes. The most phenotypically diverse isolates were genome sequenced. Gentamicin protection assays and confocal microscopy were used to determine capacity to invade bladder epithelial cells. Results. Despite significant within-patient phenotypic differences, no UTI patient was colonized by distinct strains of P. aeruginosa . Limited genotypic differences were identified in the form of non-synonymous SNPs. Gentamicin protection assays and confocal microscopy provided evidence of P. aeruginosa ’s ability to invade bladder epithelial cells. Conclusions. Phenotypic variation and cell invasion could further complicate antibiotic treatment in some patients. More work is needed to better understand P. aeruginosa UTI pathogenesis and develop more effective treatment strategies.

Publisher

Microbiology Society

Subject

Microbiology (medical),General Medicine,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3