Simple differentiation of Salmonella Typhi, Paratyphi and Choleraesuis from Salmonella species using the eazyplex TyphiTyper LAMP assay

Author:

Rödel Jürgen1,Edel Birgit1,Braun Sascha D.2,Ehricht Ralf32,Simon Sandra4,Fruth Angelika4,Löffler Bettina1

Affiliation:

1. Institute of Medical Microbiology, Jena University Hospital, Jena, Germany

2. Leibniz Institute of Photonic Technology (IPHT), Jena, Germany

3. Institute of Physical Chemistry, Friedrich Schiller University of Jena, Jena, Germany

4. Division of Enteropathogenic Bacteria and Legionella, National Reference Centre for Salmonella and Other Enteric Bacterial Pathogens, Robert Koch Institute, Wernigerode, Germany

Abstract

Introduction. Identification of typhoidal Salmonella (TS) serovars and their discrimination from non-typhoidal Salmonella (NTS) is conventionally performed by seroagglutination. This method is labour-intensive, requires technical experience and can be inconclusive in some cases. Molecular assays may be reliable alternative diagnostic tools. Aim. This study was designed to evaluate the eazyplex TyphiTyper based on loop-mediated isothermal amplification (LAMP) for fast identification of TS and S. Choleraesuis in culture. Methodology. A total of 121 Salmonella strains and 33 isolates of other Enterobacterales species were tested by the eazyplex TyphiTyper. Simulated and clinical blood cultures (BCs) were used to examine the performance of the assay for diagnosis of systemic infection. Sample preparation took about 5 min and the test running time was 20 min. Amplification was measured by real-time fluorescence detection. Results. All TS and S. Choleraesuis strains were correctly identified. The most common NTS S. Typhimurium (n=34) and S. Enteritidis (n=15) were detected as Salmonella species without any false positive result for TS targets. Cross-reactions of NTS with TS were only rarely observed. Direct testing of positive BCs gave correct results. Sensitivities and specificities of the assay were as follows: 100 and 99.3 % for S. Typhi, 100 and 98.7 % for S. Paratyphi A, 100 and 97.3 % for S. Paratyphi B, 100 and 100 % for S. Paratyphi C, 100 and 100 % for S. Choleraesuis, and 100 and 100 % for Salmonella species, respectively. Conclusion. The eazyplex TyphiTyper is very easy to perform and allows the rapid identification of TS and S. Choleraesuis isolates.

Funder

Bundesministerium für Bildung und Forschung

Publisher

Microbiology Society

Subject

Microbiology (medical),General Medicine,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3