Prediction of genome-wide imipenem resistance features in Klebsiella pneumoniae using machine learning

Author:

Li Shanshan1ORCID,Wu Jun2,Ma Nan1,Liu Wenjia31,Shao Mengjie1,Ying Nanjiao41ORCID,Zhu Lei41

Affiliation:

1. College of Automation, Hangzhou Dianzi University, Hangzhou, Zhejiang, 310018, PR China

2. Lin'an Center for Disease Control and Prevention, Lin'an, 311300, PR China

3. College of Electronics and Information Engineering, Hangzhou Dianzi University, Hangzhou 310018, PR China

4. Institute of Biomedical Engineering and Instrument, Hangzhou Dianzi University, Hangzhou, Zhejiang, 310018, PR China

Abstract

Introduction. The resistance rate of Klebsiella pneumoniae ( K. pneumoniae ) to imipenem is increasing year by year, and the imipenem resistance mechanism of K. pneumoniae is complex. Therefore, it is urgent to develop new strategies to explore the resistance mechanism of imipenem for its effective and accurate use in clinical practice. Hypothesis/Gap sStatement. Machine learning could identify resistance features and biological process that influence microbial resistance from whole-genome sequencing (WGS) data. Aims. This work aimed to predict imipenem resistance genetic features in K. pneumoniae from whole-genome k-mer features, and analyse their function for understanding its resistance mechanism. Methods. This study analysed WGS data of K. pneumoniae combined with resistance phenotype for imipenem, and established K. pneumoniae to imipenem genotype-phenotype model to predict resistance features using chi-squared test and random forest. An external clinical dataset was used to verify prediction power of resistance features. The potential genes were identified through alignment the resistance features with the K. pneumoniae reference genome using blastn, the functions of potential genes were further analysed to explore its resistance-related signalling pathways with GO and KEGG analysis, the resistance sequence patterns were screened using streme software. Finally, the resistance features were combined and modelled through four machine-learning algorithms (logistic regression, SVM, GBDT and XGBoost) to evaluate their phenotype prediction ability. Results. A total of 16 670 imipenem resistance features were predicted from genotype-phenotype model. The 30 potential genes were identified by annotating the resistance features and corresponded to known antibiotic-related genes (mdtM, dedA, rne, etc.). GO and KEGG pathway analyses indicated the possible association of imipenem resistance with metabolism process and cell membrane. CRYCAGCDN and CGRDAAAN were found from the imipenem resistance features, which were widely presented in the reported β-lactam resistance genes (bla SHV, bla CTX-M, bla TEM, etc.), and YCYAGCMCAST with metabolic functions (organic substance metabolic process, nitrogen compound metabolic process and cellular metabolic process) was identified from the top 50 resistance features. The 25 resistance genes in the training dataset included 19 genes in the external dataset, which verified the accuracy of prediction. The area under curve values of logistics regression, SVM, GBDT and XGBoost were 0.965, 0.966, 0.969 and 0.969, respectively, indicating that the imipenem resistance features have a strong prediction power. Conclusion. Machine-learning methods could effectively predict the imipenem resistance feature in K. pneumoniae , and provide resistance sequence profiles for predicting resistance phenotype and exploring potential resistance mechanisms. It provides an important insight into the potential therapeutic strategies of K. pneumoniae resistance to imipenem, and speed up the application of machine learning in routine diagnosis.

Funder

Natural Science Foundation of China

Joint Funds of the National Natural Science Foundation of China

Foundation of Graduate Research and Innovation in Hangzhou Dianzi University

Publisher

Microbiology Society

Subject

Microbiology (medical),General Medicine,Microbiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3