Network pharmacology and experimental validation identify the potential mechanism of sophocarpine for COVID-19

Author:

Zhang Hui-xian1,Zhang Xin21ORCID

Affiliation:

1. Department of Pharmacy, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, PR China

2. Department of Clinical Medicine, Jining Medical University, Jining, Shandong 272067, PR China

Abstract

Introduction. Coronavirus disease 2019 (COVID-19) has caused a serious threat to public health worldwide, and there is currently no effective therapeutic strategy for treating COVID-19. Hypothesis/Gap Statement. We propose that sophocarpine (SOP) might have potential therapeutic effects on COVID-19 through inhibiting the cytokine storm and the nuclear factor NF-κB signalling pathway. Aim. The objective was to elucidate the potential mechanism of SOP against COVID-19 through a network pharmacology analysis and its experimental validation. Methodology. The BATMAN-TCM database was used to identify the therapeutic targets of SOP, while the GeneCards and DisGeNET databases were used to identify the targets related to COVID-19. A protein–protein interaction (PPI) network was constructed from the STRING and analysed using Cytoscape software. Gene ontology (GO), Kyoto Encyclopaedia of Genes and Genomes (KEGG) and disease ontology (DO) enrichment analyses of the co-targets were performed using Metascape. Autodock 4.2.6 and Pymol software were applied for molecular docking. Levels of the proinflammatory cytokines IL-6, TNFα and IL-1β were measured by ELISA, while mRNA expression levels of intercellular adhesion molecule 1 (ICAM-1), vascular endothelial growth factor A (VEGFA) and IFN gamma (IFNG) were detected by real-time quantitative reverse transcription PCR. The protein levels of the molecules involved in the NF-κB signalling pathway were validated by western blot analysis. Results. A total of 65 co-targets of SOP and COVID-19 were determined. GO and KEGG enrichment analyses suggested that SOP affected COVID-19 by regulating the IL-17 signalling pathway, TNF signalling pathway and other signalling pathways. The PPI network and molecular docking showed that p65, ICAM-1 and VEGFA were key targets of SOP against COVID-19 and the underlying mechanism was validated in A549 cells in vitro. SOP attenuated the LPS-induced production of TNF-α and IL-6 and downregulated the LPS-induced mRNA expression of ICAM-1, VEGFA and IFNG. Mechanistically, SOP pretreatment inhibited the phosphorylation of p65 and facilitated the activation of Nrf2. Conclusions. SOP has a potential therapeutic effect on COVID-19 through multiple pathways and targets, and inhibits the production of pro-inflammatory cytokines and molecules involved in the NF-κB signalling pathway.

Funder

Science and Technology Development Program of Medical and Health from Shandong Province

Ph.D. Research Foundation of the Affiliated Hospital of Jining Medical University

National Natural Science Foundation of China

Publisher

Microbiology Society

Subject

Microbiology (medical),General Medicine,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3